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ABSTRACT Smart vehicles are emerging as a possible solution for multiple concerns in road traffic, such
as mobility and safety. This work presents radio localization methods based on simultaneous direction of
arrival (DOA), time-delay, and range estimation using the SAGE algorithm. The proposed methods do not
rely on external sources of information, such as global navigation satellite systems (GNSS). The proposed
methods take advantage of signals of opportunity and do not require the transmission of location-specific
signals; therefore, they do not increase the network load. A set of simulations using synthetic and measured
data is provided to validate the proposed methods, and the results show that it is possible to achieve accuracy
down to decimeter and centimeter-level.

INDEX TERMS Antenna arrays, localization, VANETs, vulnerable road user.

I. INTRODUCTION
Vehicular networks have been the focus of promising research
in areas such as road safety, traffic control, automated vehi-
cle control, and platooning [1]. Among these applications,
road safety, automated vehicles, and road control require the
vehicles to be able to process and to estimate the position
of vulnerable road users (VRUs), as well as the position of
the other vehicles in the vicinity, so that they can operate
properly.

For the detection of VRUs, a variety of methods have
been proposed [2]. These methods must be precise enough
and have a low computational effort to meet different safety
requirements regarding a multitude of possible situations.
A set of requirements for VRU detection systems is presented
in [3]. Most of these methods for VRU detection in the
literature rely on computer vision [4]. These methods can
provide an accuracy of up to 75% [5], [6], which might
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be insufficient for safety-critical systems such as collision
detection and prevention/avoidance.

The localization of other vehicles is also of interest and can
be obtained by using a variety of methods. One such method
is by using global navigation satellite systems (GNSS) for
each vehicle to obtain an estimate of its location. GNSS
such as the global positioning system (GPS) can provide
location information with a mean error of 15 meters in urban
environments [7]. However, the nominal accuracy of these
systems is insufficient for emerging applications in intelli-
gent transportation systems (ITS) such as platooning [8] or
for safety-critical applications. Real-time kinematic (RTK)
can be used to enhance GPS performance. However, this
method is still susceptible to the presence ofmultipath and the
occurrence of cycle slips, making its application challenging
for real-time safety-critical systems [9]. Furthermore, GNSS
requires that a set of at least four line-of-sight signals are
received from different satellites, which is not always pos-
sible in dense urban environments. Thus, such shadowing of
satellites leads to a possibly large number of outages in urban
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environments. Other means of vehicle position estimation,
such as received signal strength indicator (RSSI) [10] and
dead reckoning [11] can also be used to assist GNSS posi-
tioning allowing its usage in safety-critical applications.

Approaches that leverage the presence of inertial sensors
in smartphones inside a vehicle, using them to provide robust
position estimates for vehicles in a network have been pro-
posed [12], providing an accuracy of approximately 7 meters.
Methods for localization in vehicular networks based on
building a social model of the interactions of vehicles in
the networks can provide position estimations with an accu-
racy of up to 10 meters [13]. While these methods provide
an improvement over a GNSS only positioning solution,
the accuracy provided is not sufficient for safety-critical
applications in vehicular networks. Approaches that rely on a
dedicated localization infrastructure can provide exact local-
ization methods with an accuracy superior to one meter [14]
at the cost of increased system complexity and may not be
available outside of urban and busy roads.

Even in scenarios where the GNSS-based position pro-
vided by some vehicles can be assumed to be reliable and
precise enough for an application at hand, problems such
as spoofing and jamming can still emerge. In a spoofing
attack, it is possible to falsify GNSS positioning information
such that a vehicle will obtain a position estimate that has
been altered by the attacker. Furthermore, since GNSS-based
positioning information is usually spread using a data dissem-
ination method [15], the position information can be falsified
by the transmitting vehicle or by intermediary vehicles of the
network. Position verification approaches [16] can mitigate,
but not fully solve the problem of spoofing attacks.

Multiple-input multiple-output (MIMO) systems have
been used in modern wireless communications standards to
allow better spectral efficiency, faster data rates, and more
robust communication. The usage of MIMO in vehicular
network scenarios has been proposed to improve the network
performance [17], suppress possible jamming attacks [18],
and increase network capacity [19]. Here, we use multiple
antennas at a vehicle for accurate position estimation of other
vehicles andVRUs. It is well known that massiveMIMObase
station antennas having large apertures experience spherical
wavefronts from close scatterers of users [20]. In this work,
we use this property to aid the positioning.

Taking into account the problems and limitations of pure
GNSS, RSSI, collaborative social based methods, and the
versatility of MIMO-based systems, this work proposes an
extension of the results presented in [21]. In [21], the usage
of a variant of the space alternating generalized expectation
maximization (SAGE) [22]–[24] algorithm for joint direc-
tion of arrival (DOA), time-delay, and range estimation to
determine the position of VRUs or other vehicles was pro-
posed. This work presents a novel joint parameter estimation,
capable of improving the estimation accuracy. Furthermore,
a method for obtaining an initial position estimation to ini-
tialize SAGE and avoiding convergence to local maxima is
also presented; furthermore, the performance of the proposed

methods are tested with a real experimental setup. The pro-
posed approach takes advantage of signals of opportunity
transmitted by other vehicles or, for instance, by the cell-
phones of VRUs to estimate their relative positions. Since
smartphone adoption in countries such as the U.S.A. is now
higher than 90% [25], the signals transmitted by cellphones
being carried by VRUs are excellent candidates for signals of
opportunity for positioning. The proposed method allows that
the position of a VRU is simultaneously estimated by all vehi-
cles within its communication range. This approach does not
require the transmission of localization specificmessages and
time synchronization between different nodes. Thus, it does
not introduce extra network load in themobile network.When
compared to ultra wideband (UWB) radar systems, which can
also be used to locate obstacles [26], the proposed method
has the advantage of being able to detect VRUs that are not
in direct line-of-sight as long as the transmitted signal is not
fully obstructed.

The remainder of this work is divided into five sections.
Section II details the data model assumed for this work while
section IV details the proposed method. The performance
of the proposed method is assessed in section VI. Finally,
conclusions are drawn in section VII.

II. DATA MODEL
This work assumes that L wavefronts are received by an uni-
form linear array (ULA) composed of M antenna elements.
The received signal uses an orthogonal frequency-division
multiplexing (OFDM) scheme with of K subcarriers. The
model considers a spherical wave front, taking into account
the curvature of the propagating electromagnetic field [20].
Using the Fresnel approximation, after removing the cyclic
prefix and taking the discrete Fourier transform (DFT) of
the received signal the space-frequency response of the kth
subcarrier received at antenna m at time snapshot t can be
written as

ym,k [t] =
L∑
l=1

sk [t]αk,l[t]eωl (m−1)+ψl (m−1)
2
· ej2πk1f τl

+ nm,k [t], (1)

where

ωl = −j
2π1m sin(θl)

λ
, (2)

and

ψl = j
π12

m cos2(θl)
λrl

, (3)

where sk [t] is the symbol transmitted on the kth subcarrier at
time instant t , αk,l[t] is the complex channel gain coefficient
of the lth wavefront and the kth subcarrier at snapshot t ,
1m is the separation between antenna elements of the array,
θl is the DOA of the lth wavefront, rl is the range of the
lth wavefront, λ is the wavelength of the carrier frequency,
1f is the frequency separation between the subcarriers of
the OFDM signal, τl is the propagation delay (time-delay) of
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the lth received signal, and nm,k [t] is additive complex white
Gaussian noise.

The signal can be re-written in a matrix form as

Y[t] = A(ST[t] ◦ ZT)+ N[t] (4)

where ◦ denotes the Hadamard-Schur product, the DOA and
range steering matrix and the time-delay steering matrix can
be given as

A = [a(θ1, r1), a(θ2, r2), . . . , a(θL , rL)] ∈ CM×L , (5)

Z = [z(τ1), z(τ2), . . . , z(τL)] ∈ CK×L , (6)

with

a(θl, rl) =
[
1, eωl+ψl , . . . , eωl (M−1)+ψl (M−1)

2
]T
∈ CM×1,

(7)

z(τl) =
[
ej2π1f τl , . . . , ej2πK1f τl

]T
∈ CK×1, (8)

where

S[t]= [α1[t] ◦ s[t],α2[t] ◦ s[t], . . . ,αL[t] ◦ s[t]] ∈ CK×L ,

(9)

with symbol vector

s[t] = [s1[t], s2[t], . . . , sK [t]]T ∈ CK×1, (10)

and the vector of complex channel gains of the lth wavefront
is given as

αl = [α1,l[t], α2,l[t], . . . , αK ,l[t]]T ∈ CK×1. (11)

Rearranging using the vec-operator we can write1 2

vec{Y[t]} = vec{A(ST[t] ◦ ZT)} + vec{N[t]}

= (IK ⊗ A)vec{ST[t] ◦ ZT
} + vec{N[t]}

= (IK ⊗ A) diag{vec{ZT
}}︸ ︷︷ ︸

=Z̃

vec{ST[t]}︸ ︷︷ ︸
=s̃[t]

+ vec{N[t]}︸ ︷︷ ︸
=ñ[t]

= (IK ⊗ A) Z̃ s̃[t]+ ñ[t], (12)

where ⊗ denotes the Kronecker product. Collecting several
snapshots with t = 1, . . . ,T we can write

Ỹ = (IK ⊗ A) Z̃ S̃+ Ñ ∈ CMK×T (13)

with

S̃ = [s̃[1], s̃[2], . . . , s̃[T ]] (14)

and

E[vec{Ñ}vec{Ñ}H] = σ 2
n IMKT . (15)

1For A ∈ CM×N , B ∈ CN×P, and C ∈ CP×Q, vec{ABC} = (CT
⊗

A) vec{B}
2For D ∈ CM×N and E ∈ CM×N , vec{D ◦ E} = vec{D} ◦ vec{E} =

diag{vec{D}}vec{E}

III. SPACE-ALTERNATING GENERALIZED EXPECTATION
MAXIMIZATION (SAGE) ALGORITHM
The SAGE algorithm [22] is a generalization of the well
known expectation maximization (EM) algorithm [27]. Both
algorithms are used to derive maximum likelihood estimates
in an iterative fashion. SAGE and EM utilize the concept
of a hidden data space to avoid dealing with the complete
observable data space. In the case of a signal received at the
array, the complete data can be written as a function of the
hidden data space

Ỹ = X1 + X2 + · · · + XL (16)

where the hidden data space (one noisy wavefront) can be
given as

Xl = (IK ⊗ a(θl, rl))diag{z(τl)}S̃l + Ñl

= H(pl)S̃l + Ñl . (17)

with

S̃l = [αl[1] ◦ s[1,αl[2] ◦ s[2], . . . ,αl[T ] ◦ s[T ]]] ∈ CK×T

(18)

and

pl = [θl, rl, τl]T. (19)

The noise terms Ñl are statistically independent with
variance βlσ 2

n .
The SAGE algorithm performs two different steps,

the expectation and the maximization steps. The expectation
step can be given as

X̂l = EXl

[
Xl |Ỹ; p̂

]
= (1− βl) H(p̂l)

ˆ̃Sl

+βl

Ỹ−
L∑
l′=1
l′ 6=l

H(p̂l′ )
ˆ̃Sl′

 (20)

where the parameter vector is

p = [θT, rT, τT]T (21)

with θ = [θ1, . . . , θL]T, r = [r1, . . . , rL]T, τ =

[τ1, . . . , τL]T, and we assume that an estimate of S̃ denoted
by ˆ̃S is available. Choosing βl = 1 for each wavefront the
convergence rate of the SAGE algorithm is largest due to
the amount of new information introduced to the estimate of
the hidden data space Xl [23]. Thus, the expectation step can
be given as

X̂l = Ỹ−
L∑
l′=1
l′ 6=l

H(p̂l′ )
ˆ̃Sl′ . (22)

Themaximization step derives new (updated) estimates of the
parameters of all wavefronts. Assuming that Xl are indepen-
dent, that Ỹ and Xl are realizations of multivariate Gaussian
random variables, and with X̂l at hand from the expectation
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FIGURE 1. Vehicle equipped with antenna arrays at the wing mirrors.

step, we can maximize the log-likelihood of the hidden data
space solving

p̂l = argmax
pl

{
2 Re

{
vec{H(pl)

ˆ̃Sl}Hvec{X̂l}

}
− {||H(pl)

ˆ̃Sl ||2F
}

= argmax
pl

{
J (pl, X̂l,

ˆ̃Sl)
}
, (23)

where ||.||2F denotes the Frobenius norm.
This problem can even be broken down to one-dimensional

problems which are solved sequentially for each parameter of
pl .

The SAGE algorithm performs the expectation and the
maximization step iteratively, wavefront-by-wavefront until
the parameter estimates converge.

IV. SCENARIO DESCRIPTION
This work assumes that the vehicles connected to the VANET
are equipped with two linear antenna arrays (subarrays) at
two distinct locations on their frames. Figure 1 presents an
example of a vehicle with antenna arrays equipped at the wing
mirror position estimating the position of a VRU. Alterna-
tively, these arrays can be placed, for instance, at opposing
ends of the windshield or by the headlights.

V. ARRAY PROCESSING ALGORITHMS FOR
LOCALIZATION
This section presents three methods for estimating the posi-
tion of a transmitter in a vehicular network context, namely
the flip-flop, joint, and DOA only methods.

A. FLIP-FLOP ESTIMATION
The flip-flop method is an iterative approach that consists of
individual parameter estimation at each subarray. The esti-
mates obtained at each subarray are then used to update the
estimates at the remaining one.

Following the datamodel presented in (13), the expectation
step of the SAGE algorithm is given by

X̂q
l = Ỹq

−

L∑
l′=1
l′ 6=l

(
H
(
p̂ql′
)
ˆ̄Sl′
)
, (24)

where Ỹq
∈ CMK×T is the received data of the qth subarray,

with q ∈ [1, 2], following the signal model given in (13),

X̂q
l is the estimate for the signal received from the lth source

at the qth subarray and

pql =
[
θ̂
q
l , r̂

q
l , τ̂

q
l

]T
, (25)

where θ̂ql , τ̂
q
l , and r̂

q
l are the azimuth, time-delay, and range

estimates for the lth source at the qth subarray, respectively.
In the maximization step three one-dimensional optimiza-

tion problems are solved which can be given as

θ̂
q
l = argmax

θ
q
l

{
J
(
pql , X̂

q
l ,
ˆ̃Sl
)}
, (26)

r̂ql = argmax
rql

{
J
(
pql , X̂

q
l ,
ˆ̃Sl
)}
, (27)

τ̂
q
l = argmax

τ
q
l

{
J
(
pql , X̂

q
l ,
ˆ̃Sl
)}
. (28)

This process is iteratively performed until the estimate for all
parameters has converged.

Once range and DOA have been estimated at one of the
subarrays, an estimate of the position of the transmitter can
be obtained. Assuming that the center of a line crossing the
car and both wing mirrors to be the origin of the reference
coordinate system, denoted as O. It is necessary to obtain the
angle φql , which, as shown in Figure 1, is a complementary
angle to θql . Thus, the relationship between φ

q
l and θ

q
l is given

by

φ
q
l =

{
−(π2 + θ̂

q
l ), θ̂

q
l < 0

(π2 − θ̂
q
l ), θ̂

q
l ≥ 0.

(29)

With an estimate of this parameter at hand and considering
the coordinate system shown in Figure 1, an estimate of
the position of the lth transmitter with respect to the signal
received at the qth subarray Rxq is given by

xql = r̂ql cos(φ
q
l )+ xRxq (30)

and

yql = r̂ql sin(φ
q
l ), (31)

where xql and yql are the estimates for the coordinates of
the lth transmitter and xRxq is the position of the center of
the qth subarray on the X axis as illustrated in Figure 1.
A position estimated concerning one of the subarrays then
can be mapped into a DOA and range estimation at the other
subarray. Thus, once the full set of the parameters from one
of the subarrays has been estimated after a SAGE iteration,
the position estimate extracted from such parameters can be
used to update the current estimates for the remaining sub-
array before its next SAGE iteration. The switching between
subarrays improves the convergence rate of the SAGE algo-
rithms and prevents the search from running into a local max-
imum and thus converging to an imprecise estimate. Figure 2
presents a block diagram illustrating the flow of the proposed
method.

Under ideal conditions, after the SAGE algorithm has con-
verged for both subarrays, the transmitter position estimate
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FIGURE 2. Block diagram for the proposed flip-flop method.

would be identical for both subarrays, that is, x̂1l = x̂2l and
ŷ1l = ŷ2l . However, due to the noise, numerical errors and
further imprecision introduced during the estimation, they
will be different, i.e., x̂1l 6= x̂2l and ŷ1l 6= ŷ2l . To solve this,
the final estimate can be given as a function of the estimates
for each of the subarrays as

x̂l =
γ x̂1l + νx̂

2
l

γ + ν
(32)

and

ŷl =
γ ŷ1l + νŷ

2
l

γ + ν
, (33)

where γ and ν are weighting coefficients that represent how
reliable are the position estimates at each subarray. These
coefficients can be set, for instance, as a function of the
received signal power at each subarray. In this case γ and ν
are given by

γ =

(
z(τ̂ 1l )⊗a(θ̂

1
l , r̂

1
l )
)H

Y1 Y1 H
(
z(τ̂ 1l )⊗a(θ̂

1
l , r̂

1
l )
)

(
z(τ̂ 1l )⊗a(θ̂

1
l , r̂

1
l )
)H (

z(τ̂ 1l )⊗a(θ̂
1
l , r̂

1
l )
)
tr
(
Y1 H Y1

) ,
(34)

and

ν=

(
z(τ̂ 2l )⊗a(θ̂

2
l , r̂

2
l )
)H

Ỹ2 Ỹ2 H
(
z(τ̂ 2l )⊗a(θ̂

2
l , r̂

2
l )
)

(
z(τ̂ 2l )⊗a(θ̂

2
l , r̂

2
l )
)H (

z(τ̂ 2l )⊗a(θ̂
2
l , r̂

2
l )
)
tr
(
Y2 H Y2

) .
(35)

The line-of-sight (LOS) signal can then be selected by
finding the received signal with the smallest propagation

delay

τ̂LOS = min[τ̂1, τ̂2, . . . , τ̂L] (36)

B. JOINT DIRECT POSITION ESTIMATION
To avoid performing two independent estimations, one at
each subarray, and consequently having to merge both esti-
mates, the estimation problem can be rewritten using a dif-
ferent parameterization. A set of coordinates for a transmitter
will have a unique mapping to a given set of DOA and range
at each subarray. Thus, the problem can be directly written
concerning these parameters common to both subarrays,i.e.,
the coordinates of a transmitter in the coordinate system
shown in Figure 1. The range given in (1) can be written as

rql =
√
(xRxq − xl)2 + (yl)2, (37)

the DOA θql can be given as

θ
q
l = arctan

(
yl

xRxq − xl

)
, (38)

and

τ
q
l =

√
(xRxq − xl)2 + (yl)2

c
, (39)

where xl = x1l = x2l , yl = y1l = y2l , and c is the speed of light.
Note, that after the re-parameterization, xl and yl are the

only unknowns, and are common to both subarrays. Thus,
to jointly estimate these parameters an augmented received
signal matrix containing the inputs of both subarrays Rx1 and
Rx2 can be defined as

Ȳ =
[
Ỹ1

Ỹ2

]
∈ C2MK×T . (40)

SAGE can then be applied to the data Ȳ. The hidden data
space can be defined as

Ȳ = X̄1 + X̄2 + · · · + X̄L , (41)

where

X̄l = H̄(p̄l)S̄l + N̄l, (42)

with

H̄(p̄l) =
[
H
(
p1l
)

H
(
p2l
) ] ∈ C2MK×1, (43)

and

S̄l =
[
S̃1l
S̃2l

]
∈ C2K×T , (44)

where S̃1l and S̃2l include the symbols and channel gains
received by each subarray. Here, p̄l is a unique parameter
vector for both subarrays given by

p̄l = [xl, yl]. (45)
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The expectation step for this parameterization is given by

ˆ̄Xl = Ȳ−
L∑

l′=1
l′ 6=l

(
ˆ̄H (p̄l′)

ˆ̄Sl′
)
. (46)

Following (23), the optimization problem can be solved
directly for the transmitter coordinates xl and yl and the
maximization step can be given as

x̂l = argmax
xl

{
J
(
p̄l, ˆ̄Xl,

ˆ̄Sl
)}
, (47)

ŷl = argmax
yl

{
J
(
p̄l, ˆ̄Xl,

ˆ̄Sl
)}
. (48)

Since the data received by the subarrays is jointly used to
perform the estimation, the distance between both subarrays
contributes to the accuracy of the estimates obtained, as it
improves the identifiability of the range parameter.

The method is, however, not without its drawbacks. The
computational load, when employing the proposed joint esti-
mation, is higher than the computational load involved in the
flip-flop method. The search space for the flip-flop method is
limited to [−π2 ,

π
2 ] in the DOA estimation, and to [0, rmax] in

the range estimation, where rmax is the maximum assumed
communication distance. For the joint estimation method,
the search space, in theory, is [0, rmax] for both xl and yl ,
assuming that a transmitter can be located anywhere within
a semicircle with radius rmax . While the search space may
be reduced by assuming certain constraints on a transmitting
vehicle, it might lead to large biases in the presence of non-
line-of-sight (NLOS) components that are not arriving from
a position contained within this reduced search space. Due
to the restricted search space, such components will not
be properly estimated, and, therefore, their contribution to
the received signal will not be properly separated from the
remaining components, hence leading to estimation biases.

C. DOA ONLY ESTIMATION
Alternatively, a planar wavefront model can be assumed.
In this case, a position estimate can be obtained by per-
forming individual parameter estimations at each subarray
independently. Using the DOA estimates at each subarray and
considering the coordinate system shown in Figure 1 the lines
representing the signals received at Rx1 and Rx2 can be given
as

y1l = tan(φ1l )x
1
l − tan(φ1l )xRx1 , (49)

y2l = tan(φ2l )x
2
l − tan(φ2l )xRx2 . (50)

The position of the transmitter array can be obtained by
calculating the point where (49) and (50) intersect, which can
be accomplished by solving

xl =
tan(φ1l )xRx1 − tan(φ2l )xRx2

tan(φ1l )− tan(φ2l )
, (51)

yl =
tan(φ1l ) tan(φ

2
l )
(
xRx2 − xRx1

)
tan(φ2l )− tan(φ1l )

. (52)

Here, the selection of which received signal component
represents the LOS signal can be made by selecting the signal
with the largest power.

While this method requires only DOA estimates at each of
the subarrays, the derived position estimates are highly sen-
sitive to errors in the DOA estimates as they are a nonlinear
function of these DOA estimates.

D. APPLICABILITY OF TIME-DELAY ESTIMATION FOR
POSITIONING
Another possible solution for estimating the transmitter’s
position is to use time-delays that have been estimated. Using
the estimates of the delays τ̂ ql , an estimation of the range
between the transmitting and receiving array can be obtained
as

r̂ql = cτ̂ ql . (53)

However, estimating the range using the time-delay is less
robust than the one obtained through the SAGE estima-
tion using the spherical wave model. That is because the
time-delay can only be estimated concerning an internal ref-
erence at the receiver. That is, the time-delay estimation will
be influenced by the synchronization between the transmitter
and the receiver. Whatever error is present in synchronization
will be present in the time-delay estimation, as the internal
reference of the receiver will differ from the one of the trans-
mitters. Therefore, unless a very reliable source of synchro-
nization is present, this method of positioning is not suitable
for safety-critical applications, as an error in time-delay esti-
mation of just one nanosecond will already result in a ranging
error of approximately 30 cm. If the synchronization between
receiver and transmitter is to be relied on, the position of
the transmitter can be estimated following (30) and (31) and
substituting the range estimate for the one given in (53).

Another possible use for τ̂ ql is to aid in the selection of the
LOS component. Assuming there is a LOS component, even
if it is obstructed, its τ̂ ql estimate should be the smallest one,
as reflected signals need to travel for longer to arrive at the
receiver.

VI. SIMULATION RESULTS
This section presents a performance assessment of
the proposed flip-flop and joint positioning methods.
Subsection VI-A presents the results obtained for synthetic
data, while subsection VI-B presents the results obtained
using measured data.

A. RESULTS FOR SYNTHETIC DATA
In this section, the performance of the flip-flop and joint
positioning algorithm is assessed by a set of numerical simu-
lations. The simulation assumes two antenna subarrays at the
rear-viewmirrors; these are considered to beULAs composed
ofM = 5 antennas with an inter-element spacing of1m =

λ
2 .

For the simulations, this work assumes the transmitter is using
the LTE standard, with the maximum fast Fourier transform
size of 2048, of which 1200 are effective subcarriers and
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1f = 15 kHz subcarrier spacing. We assume that T =
100 OFDM symbols have been measured with a normal
cyclic prefix. Channel estimation and symbol decision are
made by selection the received data at one antenna of each
subarray and following the standard LTE decoding block.
Frequency correlation is introduced following the method
proposed in [28]. A bandwidth ranging from a single tonal
signal (narrowband) to 20 MHz (standard LTE channel band-
width) is considered to assess the performance of the pro-
posed methods concerning the bandwidth of the transmitted
signal. The ranging estimation is done only using the range
parameter present in the spherical wave model. The antenna
arrays are assumed to be placed 1.80 m apart from each
other, an average car width. For the sake of completeness and
unless stated otherwise, the simulations assume the presence
of 3 NLOS multipath components with respective scatterers
randomly located between the transmitter and the receiving
array. The number of components L that are received is
unknown. The model order L is estimated in the initialization
of the SAGE algorithm. Unless stated otherwise, the Rician
K factor for the simulations is kept fixed at 3 dB. The SAGE
algorithm for both the flip-flop and joint estimation methods
is initialized using position estimates obtained using the DOA
only method. The root mean squared error (RMSE) is derived
based on 1000 Monte Carlo runs and is calculated as

RMSE =

√√√√1
I

I∑
i=1

(
(x̂(i)l − x)

2 + (ŷ(i)l − y)
2
)
, (54)

where x̂(i)l and ŷ(i)l the estimates of the ith Monte Carlo run
and x and y denote the true location of the transmitter.

Figure 3 presents an assessment of the performance of the
proposed methods under varying signal-to-noise ratio (SNR).
The distance between the receiving array and the transmitter
is kept fixed at 20 m, and the SNR varies from −5 to 25 dB.
For the joint estimation method, the extra frequency samples
provided by a broader bandwidth have a large impact on
performance. In the narrowband case, SAGE does not con-
verge to an accurate estimate under low to moderate SNR
conditions. However, even under the assumption of a nar-
rowband signal, sub-meter accuracy is achievable at moderate
SNRs. With larger bandwidths, the joint estimation method is
capable of sub-centimeter accuracy, even for low SNRs. The
flip-flop method’s performance is shown to be more stable in
the narrowband case. However, it is still outperformed by the
joint method for high SNRs.

The second set of simulations studies the performance
of the proposed methods dependent on the distance to the
transmitter. The SNR is kept fixed at 15 dB, and the distance
between the receiving array and the transmitter varies from
5 to 50 meters. The results shown in Figure 4 highlight that,
for both methods, the accuracy is degraded as the distance
to the transmitter increases. Despite having the worst per-
formance, the flip-flop method is still capable of sub-meter
performance for a transmitter up to a distance of 35 m in

FIGURE 3. Position estimation error vs SNR.

FIGURE 4. Position estimation error vs distance from source.

FIGURE 5. Position estimation error vs number of NLOS components.

the narrowband case and, in the broadband case, decimeter
performance up to a distance of 50 m.

Figure 5 presents the performance of the proposed algo-
rithms with respect to the number of multipath compo-
nents (MPCs) with K-factor fixed at 3 dB. The SNR is kept
fixed at 15 dB, and the distance from the transmitter to the
receiver is fixed at 20 m. The results show that the number
of MPCs has only a moderate impact on the performance
of the proposed method. As the number of MPCs increases,
the probability of closely spaced sources increases, and the
probability of MPCs with similar DOAs and time-delays
increases, leading to a possible higher spatial and frequency
correlation. The increased spatial correlation is especially
harmful as it can make an MPC non-separable from the LOS
component by SAGE. In the unlikely scenario where only the
LOS component is present, the performance of the proposed
methods is significantly improved.

Figure 6 assesses the effect of the K-factor on the proposed
methods, the number of MPCs is kept fixed at six, and the
K-factor is varied.

Figure 7 shows the estimation error of xl and yl of the
position estimation. For this set of simulations, the distance
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FIGURE 6. Position estimation error vs K-factor.

FIGURE 7. Position estimation error over the x- and y-axes.

from the transmitter is fixed at 20 m, the performance pre-
sented is for the joint estimation method using a 10 MHz
bandwidth. The results highlight that most of the estimation
error is a result of the estimation errors of yl . The ranges rl are
present only in ψl of the model given in (3). This component
has a nonlinear relationship with the range parameter. Thus,
even small errors in the identification and estimation of this
component will lead to somewhat significant errors in the
range estimate. However, even for low SNRs, the error of yl
is kept below one centimeter.

B. RESULTS FOR REAL DATA
As a proof of concept and to assess the performance of
the proposed method in a real-world scenario, a measured
data set is used. The measurements were performed using
a center frequency of 2.6 GHz with 50 MHz of bandwidth.
The antenna array is a ULA composed of 128 elements
with inner element spacing of λ

2 = 5.8 cm and spanning
8 meters. Out of the data set, we select two subsets ofM = 5
antennas separated by approximately 1.8 m and use 10 MHz
out of the 50 MHz available bandwidth in the measurements.
The measurements were performed at the E-building of the
Faculty of Engineering LTH, Lund University, Sweden. The
antenna array was placed on the roof of the building, and
the users were located on a patio overlooked by the array.
Figure 8 presents a picture of the antenna array that was
used for the measurements. As seen, the scenario for the
measurements is not vehicular, but it serves as a proof of
concept and contains many scatterers besides users as would
be expected in an urban vehicular scenario. Figure 9 presents
a map of the location of users on the patio considered for the
measurements.

The positions of users 10, 15, 19, and 26 are chosen to be
estimated, as depicted in Figure 9, to assess the performance

FIGURE 8. Antenna array used for measurements.

FIGURE 9. User distribution for measurements.

FIGURE 10. Position estimation error for measured data.

of the proposed algorithms using real data. One of the short-
comings of the measured data set is that the elevation of the
antenna array is not the horizon, as assumed in the model
of this work, which might introduce some bias on the final
position estimates.

Figure 10 presents the performance of the proposed posi-
tion estimation methods when applied to the measured data
set. Synthetic noise is added to themeasurements to assess the
performance of the proposed method concerning SNR in real
scenarios. The performance behaves similarly to the results
obtained with the simulated data set, users that are located
further away from the array will have a smaller localization
accuracy than those closer to the array.

The overall difference in performance from the real data set
to the simulated data set is most likely due to noise already
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present in the measurements, which is introduced by instru-
ments such as power amplifiers and converters used in the set-
up. Despite these imprecisions, the proposed joint estimation
method was capable of achieving sub-meter performance for
an added SNR of up to 10 dB for all selected users and
presented centimeter-level accuracy for an SNR of 20 dB. The
flip-flop method was also able to achieve sub-meter accuracy
for SNRs larger than 10 dB with a faster convergence rate
when compared to the joint estimation method.

VII. CONCLUSION
This work presented novel methods for position estimation
for vehicular network systems. The proposedmethods rely on
using a spherical wave model and employing the SAGE algo-
rithm to provide position estimates. The presented flip-flop
method estimates the DOA and range of the received signals
and the respective transmitter at two subarrays separately and
uses the results of one array to update the problem on the
remaining one. This method has a fast convergence time but
has limited accuracy.

The proposed joint estimation method is used to obtain a
direct estimate of the coordinates of the transmitter by param-
eterizing the problem directly with respect to such coordi-
nates. While this method has a slower convergence time, it is
capable of providing superior performance compared to the
flip-flop method.

This work shows that the proposed methods are capable of
achieving centimeter-level accuracy for moderate distances
and large SNRs, and provide sub-meter accuracy for moder-
ate SNRs, using a real data set obtained from measurements.

The proposed methods can be used as a stand-alone
localization estimation method for both vehicles and VRUs.
Furthermore, they may be used for spoofing detection and
mitigation, as they rely solely on estimating parameters from
the physical layer. Such parameters are extremely hard to
fake with hardware available today. The proposed methods
do not require any specific data to be exchanged between the
transmitter and the receiver and can be applied when any data
exchange is happening on the network. Therefore, the pro-
posed methods do not imply an increased network load.
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