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The Chinese Remainder Theorem (CRT) explains how to estimate an integer-valued number from the 
knowledge of the remainders obtained by dividing such unknown integer by co-prime integers. As an 
algebraic theorem, CRT is the basis for several techniques concerning data processing. For instance, 
considering a single-tone signal whose frequency value is above the sampling rate, the respective peak 
in the DFT informs the impinging frequency value modulo the sampling rate. CRT is nevertheless 
sensitive to errors in the remainders, and many efforts have been developed in order to improve its 
robustness. In this paper, we propose a technique to estimate real-valued numbers by means of CRT, 
employing for this goal a Kroenecker based M-Estimation (ME), specially suitable for CRT systems with 
low number of remainders. Since ME schemes are in general computationally expensive, we propose 
a mapping vector obtained via Kroenecker products which considerably reduces the computational 
complexity. Furthermore, our proposed technique enhances the probability of estimating an unknown 
number accurately even when the errors in the remainders surpass 1/4 of the greatest common divisor 
of all moduli. We also provide a version of the mapping vectors based on tensorial n-mode products, 
delivering in the end the same information of the original method. Our approach outperforms the state-
of-the-art CRT methods not only in terms of percentage of successful estimations but also in terms of 
smaller average error.

© 2019 Elsevier Inc. All rights reserved.
1. Introduction

The Chinese Remainder Theorem (CRT) explains how to solve 
an algebra problem in which an integer-valued N is determined 
from its remainders, as in⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N mod M1 = r1,

N mod M2 = r2,

...
...

...

N mod ML = rL,

(1)
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where mod stands for the modulus operator, M is the greatest 
common divisor (GCD) of all moduli Mi , for Mi ∈ {M1, M2, . . . , ML}, 
and Mi = M�i , where �1 < �2 < · · · < �L , are assumed relatively 
co-prime, i.e., for i �= j, GCD(�i, � j) = 1. This data model, where all 
possible pairs of moduli Mi have the same GCD, is also adopted in 
[1–5]. From a general standpoint, the theoretical interval in which 
the number N is uniquely determinable is the dynamic range 
D = LCM(M1, M2, . . . , ML), i.e., 0 ≤ N < D , where LCM denotes 
the least common multiple of a set of numbers [2,6].

The remainders are ri , for i ∈ {1, 2, . . . , L}. All remainders re-
spect 0 ≤ ri < Mi for i ∈ {1, 2, . . . , L}. Given any i-th row of (1), an 
equivalent expression is

ni Mi + ri = N, (2)

where the ni , for i ∈ {1, 2, . . . , L} are the folding integers, also 
unknown. From the knowledge of Mi and ri , the CRT offers the 
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straightforward calculation integer-valued N when the remainders 
are free of errors [7–9].

Particularly in signal processing, the CRT can be used to solve 
the problem of estimating the frequency of a desired signal in un-
dersampling systems [10–13], i.e., systems whose sampling rates 
are co-prime and all below the Nyquist limit [14–18]. The fre-
quency is estimated in terms of their remainders given the sam-
pling rates. For illustration, consider that a single-tone signal 
whose frequency value is f = 2177 MHz is sampled by four dis-
tinct synchronized sensors, whose sampling rates are respectively 
Fs,1 = 11 MHz, Fs,2 = 13 MHz, Fs,3 = 15 MHz and Fs,4 = 17 MHz. 
The four sampling rates form a co-prime system since the GCD of 
any pair GCD{Fs,i, Fs, j} = 1, for i �= j. Hence, the peaks in the DFT 
taken by every sensor are respectively {10, 6, 2, 1}, which are the 
remainders in⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f mod 11 = 10,

f mod 13 = 6,

f mod 15 = 2,

f mod 17 = 1,

(3)

where the moduli Mi are the sampling rates. For instance, in 
the undersampling system whose CRT scheme is given by (3), 
the sensor of 15 MHz reads exactly the same sequence of snap-
shots of a hypothetical impinging waveform of 2 MHz, since the 
same vector of snapshots is obtained with the frequency value of 
f = 2177 MHz or f = 2 MHz when sampled at Fs,3 = 15 MHz. 
The main goal of undersampling schemes is reducing the necessary 
sampling rates for achieving the values of frequency. Theoretically, 
only three samples are sufficient for featuring frequency, phase and 
amplitude of a wavelength, provided that such samples are close 
enough. This closeness implies that the sampling rate must be suf-
ficiently high. Undersampling systems, on the other hand, are suit-
able for the acquisition of high-frequency signal components that 
are sparse in the frequency domain when it is not possible to sam-
ple such high-frequency components at the Nyquist rate because 
of limitations of the sampling rate in the hardware in use [19]. For 
instance, in [20], with a monostatic synthetic aperture radar (SAR) 
for terahertz (THz), the wavelength is in the order of millimeter 
or submillimeter, and hence the requirement on subwavelength 
interval of spatial sampling by the Nyquist theory aggravates the 
measurement difficulty.

Clearly, measurements in the realm of digital signal process-
ing are liable to jitter and phase noise as part of real applications. 
These errors affect the remainders in a CRT originated by an un-
dersampling system. It is important to notice that any deviations in 
the remainders cannot be reduced or improved by the CRT system 
itself. A better CRT technique can, however, estimate the unknown 
number – in the case of undersampling systems, the frequency – 
with better approximation given the mentioned pre-existing errors.

In engineering applications, either the unknown is an integer 
or a real-number, and errors may exist or not. In the latter, we 
have deterministic applications, related for instance to cryptog-
raphy [21,22], Digital Signature Standard (DSS) [23], image pro-
cessing and security [24,25], secret sharing schemes [26,27] and 
E-Voting systems [28]. However, not only the remainders have er-
rors, but also the unknown value is a real-valued number. Hence, 
beyond undersampling systems, CRT is also employed to estimate 
unknown numbers in the presence of errors such as in cogni-
tive radio networks (CRN) [29], polynomial reconstruction [30–32], 
electric encoders (EE) for motion control [33], and radio interfer-
ometric positioning system [34]. Another signal processing appli-
cation of CRT is related to phase unwrapping based systems for 
distance estimation [7,8]. In such application, the remainders are 
the phase of arrival in terms of wavelength, and the moduli are 
the wavelengths of each spectral component.
The state-of-the-art approaches for CRT estimation includes the 
traditional CRT [1,9], the robust CRT [1,2,6,35], the closed-form 
robust CRT [1,7] and the maximum likelihood based robust CRT 
[3,4]. In the latter, an optimization of the search routine for a real-
valued number is proposed assuming Gaussian distributed errors 
with different variances, whereas in the closed-form robust CRT 
the variances are presumed constant. There is still the Multi-Stage 
Robust CRT, which is proposed in [8] and consists in splitting the 
moduli of a CRT system over different moduli groups in accordance 
with the GCD of each set. The number of resulting groups is the 
number of stages. In [13], a generalization of the two-stage robust 
CRT algorithm to a multi-stage system is also presented. Splitting 
the moduli in groups with different GCD by group can improve the 
remainder error bound for a given set of moduli in terms of the 
remainder error bound of the entire CRT system. However, such 
a split is based on adopting for each moduli set the same con-
cepts of the CFR-CRT. When all moduli share the same pairwise 
GCD as presumed in (1), applying the Multi-Stage Robust CRT does 
not yield improvements for the estimation of N in terms of the 
maximum tolerable error.

In this paper, we propose a Kroenecker based M-Estimation 
(ME) approach (KME-CRT). By exploiting the Kroenecker product 
that yields a mapping vector, we drastically reduce the computa-
tional complexity of the ME approach allowing its practical appli-
cation. Due to its routines, the here presented method is specially 
suitable for CRT systems with few remainders, which is equivalent 
to networks with few sensors. Furthermore, our proposed tech-
nique enhances the probability of estimating an unknown number 
accurately even when the errors in the remainders surpass 1/4 of 
the greatest common divisor of all moduli. We also provide a ver-
sion of the mapping vectors based on tensorial n-mode products, 
delivering in the end the same information of the original method.

The remainder of this paper is organized as follows. The CRT 
systems and the state-of-the-art Closed-Form Robust CRT (CFR-
CRT) and Maximum Likelihood Estimator Based Robust CRT (MLE-
CRT) are reviewed in Section 2. Section 3 presents the proposed 
KME-CRT for assembling the mapping vector, along with its ten-
sorial versions. Simulations and results are presented in Section 4, 
and Section 5 concludes the paper.

In this paper, bold calligraphic letters denote tensors, as for ex-
ample in T . Bold upper case letters are used to denote matrices, 
whereas bold lower case letters are used for vectors. Scalars are 
denoted by non-bold letters, either upper, lower case or Greek let-
ters. Estimated numbers are written as in N̂ , whereas values with 
errors are notated as in r̃. Vectors of estimations and values with 
errors are notated respectively as in n̂ and r̃. We assume that 
non-integer values have the modulus operation applicable only on 
its integer part. Thus, when a real-valued N = Nint + Ndec, where 
Nint ∈ Z and Ndec ∈ R, with 0 ≤ Ndec < 1, hence with the parcels 
referring respectively to the integer and decimal parts of N , we 
assume that

N mod Mi = (Nint mod Mi) + Ndec. (4)

We introduce the Kroenecker product based on [36]. Let Sp×q

denote the space of real or complex matrices. The (i, j)-th entry of 
a matrix A ∈ S

p×q is aij . The Kroenecker product is defined for two 
matrices of arbitrary sizes over any ring. For instance, consider ma-
trices A ∈ S

p×q and B ∈ S
u×v . Their Kroenecker product is defined 

as

A ⊗ B =
⎡
⎢⎣

a11B . . . a1qB
...

...

ap1B . . . apqB

⎤
⎥⎦ ∈ S

pu×qv , (5)

where the symbol “⊗” stands for the defined Kroenecker product.
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2. The state-of-the-art CRT based techniques

In practical applications, differently from solving (1), CRT prob-
lems consist in estimating a real-valued N with erroneous remain-
ders as in⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N mod M1 + �1 = r̃1,

N mod M2 + �2 = r̃2,

...
...

...

N mod ML + �L = r̃L,

(6)

where r̃i = ri + �i , for i ∈ {1, 2, . . . , L}, with �i denoting the de-
viation or error in the i-th remainder originated from noise or 
inaccuracy in measurement. All remainders respect 0 ≤ ri < Mi for 
i ∈ {1, 2, . . . , L}. Solving (6) is generally far more complex than (1). 
CRT is not a robust system due to the fact that small errors in any 
remainder may cause a large reconstruction error [1]. Note that, 
given (2), we can also write

ni Mi + r̃i − �i = N. (7)

A variable τ is defined as the remainder error bound, or the 
maximum absolute value for every existing error �i , hence τ =

max
i∈{1,...,L}

|�i |. Assuming M as the GCD of all moduli Mi , if

τ <
M

4
, (8)

the calculation of the folding integers ni is guaranteed [1,37]. The 
estimated values of ni in CFR-CRT are designed as n̂i and N̂ is the 
estimation for N .

The dynamic range D of a CRT system delimits the value until 
which N can be uniquely determined [38,39]. As a consequence, 
the search for the value of N is performed only in the range of D . 
If all moduli Mi are co-prime such that M = 1, D = ∏L

i=1 Mi . Oth-
erwise, if M > 1, let

�i = Mi

M
, i ∈ {1,2, . . . , L}, (9)

so that all �i , for i ∈ {1, 2, . . . , L}, are co-prime, and the dynamic 
range D is given by

D = M�, (10)

where � = ∏L
i=1 �i .

In this paper, the goal is to estimate a desired real-valued N
given the information about Mi and r̃i , for i ∈ {1, ..., L}. One of 
the state-of-the-art CRT techniques is the Robust CRT [2,6], whose 
main disadvantage is that the order of 2(L −1)�i searches is neces-
sary even in the 1-D searching scheme. As a consequence, when L
or �i gets large, the searching complexity is still high [1,8]. There-
fore, we consider the CFR-CRT and the MLE-CRT in terms of bench-
mark to compare with our proposed approach. In the CFR-CRT, the 
variances of the errors are presumed equal, whereas MLE-CRT ad-
dresses scenarios in which the variances of errors are different and 
known at prior.

Note that CRT is a deterministic problem and that, given a re-
mainder error bound τ , all errors are confined to a fixed interval 
[N − τ , N + τ ]. Nevertheless, probabilistic examples of CRT solu-
tions have also been proposed, as for instance in [40]. In the fol-
lowing state-of-the-art methods, the errors are presumed to have 
Gaussian distribution. In a Gaussian distribution, any error that 
surpasses τ can be arbitrarily high with non-zero probability, thus 
violating the assumption of the existence of τ . In order to keep the 
Gaussian distribution yet with reasonable error profile, we assume 
that τ ≈ 3σ , hence assuring that more than 99% of the values of 
Algorithm 1 State-of-the-art technique: CFR-CRT.
1: procedure CFR-CRT (Mi , ̃ri )
2: for i = 1 : L, i �= z do

3: q̂i,z ←
[

r̃i−r̃z
M

]
% The reference remainder r̃z is chosen by means of

4: % (17)–(19), and q̂i,z follows the definition of (16)
5: �i,z ← �zmod�i % MMI operation as specified in (12).
6: % Note that all �i are defined in (9)
7: ξ̂i,z ← (q̂i,z�i,z) mod �i

8: bi,z ← γz/�i mod �i % Recall that all γi are computed as in (11)

9: n̂z ← ∑L
i=1,i �=z(ξ̂i,zbi,z

γz
�i

) mod γz

10: for i = 1 : L, i �= z do

11: n̂i ← n̂z�z−q̂z,1
�i

12: N̂ ← 1
L

∑L
i=1(n̂i Mi + ri)

�i lie in the interval [−τ , +τ ]. In doing so, we also preserve the 
possibility of changing the variances of errors by modifying the 
value of τ .

2.1. Closed-form robust CRT

According to [1,7,13], the CFR-CRT is summarized in (11)–(19)
and Algorithm 1. First an auxiliary variable γi is defined using �i

from (9) and � from (10) as follows,

γi = �

�i
, 1 ≤ i ≤ L. (11)

Note that all possible pairs {γi, �i } are co-prime. The modu-
lar multiplicative inverse (MMI) of a number γi modulo �i is the 
smallest number γ i that satisfies γiγ i = k�i +1, for some k ∈ Z. In 
[37], the Qin’s Algorithm for the calculation of the MMI by means 
of a fast matrix based technique is presented. We notate the MMI 
function as

γ i = γi mod �i . (12)

According to [1], the co-primality between {γi, �i} assures the 
existence of a MMI γ i . Next, we define qi ,

qi =
⌊

r̃i

M

⌋
, (13)

where 	.
 stands for the flooring operation. N0 is defined as

N0 =
L∑

i=1

(γ iγiqi) mod �i . (14)

In fact, the sequence (11)–(14) is used to calculate integer-
valued N when the remainders are free of errors and receives 
different names in the literature, such as Conventional CRT [1,2,5,
38], Gauss’s Algorithm [41,42], CRT Standard version [28] and Clas-
sical CRT formula [3,4]. In [9], it is called Traditional CRT, as well 
as in [1,3,4]. We adopt the latter terminology. The Traditional CRT 
is based on the extended Euclidean algorithm [37] and is incorpo-
rated as part of the CFR-CRT in [1].

It is still worth noting that, according to the CRT theory,

N0 = ni�i + qi, (15)

for i ∈ {1, 2, . . . , L}, i.e., N0 is an integer-valued number whose 
value is obtained by means of (15) independently of the cho-
sen i. The CFR-CRT is developed with sequential subtractions of 
(ni�i + qi) from a reference remainder whose row is z, yielding 
L − 1 results that are generated by applying

nz�z − ni�i = qi,z (16)
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where qi,z = qi − qz , for i ∈ {1, 2, . . . , z − 1, z + 1, . . . L}. In order 
to choose the reference remainder, first we define the circular dis-
tance of two real numbers x and y for a non-zero positive number 
C as

dC (x, y) � x − y −
[

x − y

C

]
C . (17)

In [1], the z-th row, which is the row of the reference remain-
der, is obtained via

r̂c � arg min
0≤m≤M−1

L∑
i=1

d2
M(r̃c

i ,m) (18)

where r̃c
i = r̃i mod M , for i ∈ {1, 2, . . . , L}, and

z = arg min
j∈{1,2,...,L}

d2
M(r̃c

j, r̂c). (19)

The estimation of N̂ obtained from CFR-CRT according to [1]
is summarized in Algorithm 1, where the results of (9)–(19) are 
presumed available. In line 3 of Algorithm 1, [.] stands for the 
rounding operator.

The selection of the optimal reference remainder r̃z is based on 
the reference common remainder r̃c

i , which can only be appropri-
ately determined when σ 2

1 = σ 2
2 = · · · = σ 2

L . When σ 2
i are different 

for each �i , for i ∈ {1, 2, . . . , L}, the calculations based on r̃z as in 
(18) and (19) may be ineffective [3].

Note that, although the Traditional CRT is part of the CFR-CRT, 
the latter is the method that makes the estimation of N achiev-
able when the remainders have errors. CFR-CRT can be used for 
integer-valued N free of errors; however, in this case, it consists in 
a simple application of the above commented Traditional CRT.

2.2. Maximum likelihood based robust CRT

Aiming to solve the case of different variances in the errors, 
a Maximum Likelihood based CRT is proposed in [3,4]. MLE-CRT is 
basically a method for determining the best r̂c , the estimation of 
the common remainder rc .

In [3,4], the standard deviations are σi = μMi , for i ∈
{1, 2, . . . , L}, where μ is a small arbitrary positive factor. A set 
� is then assembled as

� =
{(

L∑
i=1

wir̃
c
i + M

t∑
i=1

wρ(i)

)
mod M

}
, for t ∈ {1,2, . . . , L},

(20)

where ρ is a permutation of the set {1, 2, . . . , L} such that r̃c
ρ(1)

≤
· · · ≤ r̃c

ρ(L)
, and

wi = 1/σ 2
i∑L

i=1 1/σ 2
i

. (21)

The estimated common remainder r̂c is then achieved by

r̂c � arg min
x∈�

L∑
i=1

wid
2
M(r̃c

i , x) (22)

Algorithm 2 shows the MLE-CRT, whose input arguments are 
Mi , r̃i and μ.
Algorithm 2 State-of-the-art technique: MLE-CRT.
procedure MLE-CRT(Mi , ̃ri , μ)

for i = 1 : L do
r̃c

i ← r̃i mod M
σi ← μMi

for i = 1 : L do

wi ← 1/σ 2
i∑L

i=1 1/σ 2
i

r̃′ ← [
r̃1 r̃2 . . . r̃L

]
w′ ← [

w1 w2 . . . w L
]

RW ← [
r̃ w

]
RW ← sortrows(RW)

for i = 1 : L do
for t = 1 : i do

�(i) ←
{(∑L

j=1 w jr̃c
j + M

∑t
j=1 RW( j,2)

)
mod M

}
r̂ ← zeros[L × 1]
for i = 1 : L do

x ← �(i)
r̂(i) ← ∑L

j=1 w jd2
M (r̃c

i , x)
[∼, index] ← min(r̂)
r̂c = �(index)

for i = 1 : L do

q̂i ←
[

r̂i−r̂c

M

]
N̂0 ← ∑L

i=1 γiγi q̂i mod �

N̂ ← MN̂0 + r̂c

3. Kroenecker product based mapping vector

In Subsection 3.1, we exploit the CRT system with error-free re-
mainders, with N ∈ Z and �i = 0, for i ∈ {1, 2, . . . , L}, in which 
N is not estimated but rather calculated in a deterministic way. 
Next, Subsection 3.2 handles the case of remainders with errors, 
when N̂ , the estimated N , is obtained. In Subsection 3.3, we pro-
vide a tensorial model based on n-mode products for delivering 
the same information of the mapping vector with regards to the 
error-free case of Subsection 3.1 and the remainders with errors of 
Subsection 3.2. Subsection 3.4 presents the study of how the pro-
posed mapping vector enables correct estimations N̂ even when 
M/4 ≤ τ < M/2. Recall that, when any error surpasses M/4, the 
reconstruction of the folding integers n̂i is not guaranteed in ac-
cordance with the literature.

If an ME routine is performed over the entire dynamic range D
in order to find the most appropriate value of N̂ that minimizes 
all deviations with regards to the remainders, the result is a com-
putationally expensive task. In order to mitigate this hindrance, we 
propose a mapping vector v that indicates on which parts of D the 
search for N should be made. From the knowledge of the values 
Mi and r̃i , L auxiliary vectors ci , for i ∈ {1, 2, . . . , L} are assembled, 
which jointly yield v.

As it will be shown in Algorithm 3 of Subsection 3.2, our M-
Estimator for a given N̂ is based on the minimization of θ in (23). 
Using the circular distances of (17), for the case of all variances 
with the same value, the estimator is given by

θ = arg min
N̂

L∑
i=1

(dMi (N̂ mod Mi, r̃i))
2, (23)

whereas if the variances are a function of the respective modulus 
Mi ,

θ = arg min
N̂

L∑
i=1

(
dMi (N̂ mod Mi, r̃i)

Mi

)2

, (24)

where the values of N̂ are to be selected according to the con-
tent of the mapping vector v. Note that either in (23) and (24) the 
intermediate estimation of the folding integers n̂i is avoided, dif-
ferently of the state-of-the-art CFR-CRT and MLE-CRT.
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3.1. Data structure for remainders without errors

In this Subsection, we address the problem of calculating N ∈ Z

and �i = 0, for i ∈ {1, 2, . . . , L}. Prior to the CRT system itself, we 
explain how N can be determined by the remainders and moduli 
under the perspective of group theory as a way of featuring the 
proposed method. In any CRT system, each of the L rows informs 
the possible values for N over the dynamic range D . We then as-
semble the sets Si , for i ∈ {1, 2, . . . , L}, where the k-th component 
is of the form

ri + (k − 1)Mi, (25)

for k ∈ {1, 2, . . . , γi}. Therefore, the values in each set Si represent 
the sufficient and necessary set of possibilities for N in the dy-
namic range respecting the condition N mod Mi = ri . Hence,

Si = {ri, (ri + Mi), (ri + 2Mi), . . . , (ri + (γi − 1)Mi)}, (26)

and we can write

∩L
i=1 Si = {N}, (27)

which is equivalent to stating that N is the unique number that 
figures simultaneously in all sets Si , for i ∈ {1, 2, . . . , L}.

Proposition 1. The set of values in each Si specified as in (26) not only 
cover all the possibilities of values for the unknown N, given Mi and ri
over D, but also N cannot be excluded from any set Si .

Proof of sufficiency. In case of Proposition 1, sufficiency is proven 
if and only if any additional insertions of (ri + kMi) terms beyond 
the limit shown in (26), i.e., (ri + (γi − 1)Mi), lead to repetition 
of terms in the set Si . Let (ri + kMi), k ∈ {0, 1, . . . , (γi − 1)} be 
the (k + 1)-th possible value for N in the set Si . We show that 
extending the content of Si by inserting a k′-th entry, where

k′ = q1γi + q2, (28)

where q1 ∈ Z
+ and q2 ∈ Z, entails repetition of values in Si , since 

the inserted values are of the form

ri + (q1γi + q2)Mi = ri + q1 D + q2Mi, (29)

as Mγi�i = D . Given the definition of the dynamic range, (ri + D +
q2Mi) mod D = ri + q2Mi , if q2 < D/Mi . If, otherwise, q2 ≥ D/Mi

in (29), then

mod (k′Mi, D) = mod (q2Mi, D) = mod (D + q′
2Mi, D)

= mod (q′
2Mi, D), (30)

so that it is possible to substitute q′
2 Mi = k′ and recalculate (28)

until q2 < D/Mi in (29). Note that, since q2 ∈ Z, D/Mi is also an 
integer, it is equivalent to state that q2 ≤ γi − 1, as D/Mi = γi . 
Therefore, the dynamic range is surpassed given a set of values 
for Si if any arbitrary value (ri + k′Mi), with k′ ∈ {γi, γi + 1, . . . }, 
is included in Si . Due to the minimum values that q1 and q2 can 
assume in (28), namely q1 = 1 and q2 = 0, no further elements are 
to be included in (26), proving the limit k′ = γi . As a consequence, 
each set Si has γi terms. The smallest value for Si cannot be lower 
than ri due to the non-admission of negative numbers. Hence, the 
analysis of the boundary to the left is dismissed.

Proof of necessity is the requirement that no possible value 
of N can be excluded from at least one set Si , i ∈ {1, 2, . . . , L}. 
This proof is straightforward, since N mod Mi = ri , k ∈ {0, 1, . . . ,
γi − 1}. �
Fig. 1. Visual equivalent description of (33) with L = 3 as example.

Fig. 2. Visual equivalent description of ei as specified in (31).

Defining ei ∈ Z
Mi as⎧⎪⎨

⎪⎩
ei(p) = 1, if p = ri and ri �= 0,

ei(p) = 1, if p = Mi and ri = 0,

ei(p) = 0, otherwise,

(31)

and the vector uk as

uk ∈ Z
k,uk( j) = 1 for j ∈ {1,2, . . . ,k}, (32)

each column-vector ci ∈ Z
D is obtained via Kroenecker product as

ci = wi ⊗ ei, (33)

where, defining the auxiliary set Yi ∈ {1, . . . , i − 1, i + 1, . . . , L},

wi = u�Yi (1)
⊗ u�Yi (2)

⊗ · · · ⊗ u�Yi (L−1)
, (34)

which is the same as writing

wi = uγi . (35)

Carrying out the product in (33) is the same as assembling 
a vector which is formed by γi stacked vectors ei . Fig. 1 shows 
the concept for visualization with an example where L = 3. Note 
that the length of the resultant ci is Miγi = M� = D , for i ∈
{1, 2, . . . , L}, in accordance with (10).

Every vector ei ∈ Z
Mi in Fig. 1 has zeros in all entries, except in 

entry ei(ri) = 1 according to (31). A generic representation of ei in 
a system with L = 3 is shown in Fig. 2.

In the context of undersampling systems, Fig. 1 combined with 
Fig. 2 has the representation of Fig. 3 for L = 3. The sampling 
rates Fs,i are the length of the i-th DFT window and numeri-
cally correspond to Mi , for i ∈ {1, 2, 3}. The ri -th entry of each 
ei is 1 due to (31) as in Fig. 2. Here, ri indicates the frequency 
f undersampled at the rate Mi = Fs,i , as f mod Mi = ri , in accor-
dance with (3). Note that the value of N is achieved only when 
v1(N) = v2(N) = v3(N) = 1, and that over the dynamic range D
only one value of N fits in this definition. This simultaneousness 
derives from (27). Since all peaks in Fig. 3 are of the form ri +kMi , 
for k ∈ {0, 1, 2, . . . , γi − 1}, they obey the rule of (25).

Each vector ci ∈ Z
D is obtained by means of (33). Gathering all 

ci together, the mapping vector v ∈ Z
D is given by{

v(p) = 1, if
∏L

i=1 ci(p) = 1,

v(p) = 0, otherwise.
(36)
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Fig. 3. Visual equivalent description of CRT for an undersampling system with L = 3. 
Each graphic reproduces the values in ci through repetitions of the DFT window, 
and the value of N is achieved when all the peaks occur simultaneously, due to 
(27).

Note that each vector ci contains a sequence of entries whose 
values are either 0 or 1. The relevant information is the cardinal-
ity of the entries 1 throughout the vector ci , which indicate the 
possible values of N according to the content of each set Si , for 
i ∈ {1, 2, . . . , L}, as in (26). Hence, (36) aims at obtaining the set 
intersection specified in (27), which returns N .

3.2. Data structure for remainders with errors

If N ∈ Z and �i = 0, for i ∈ {1, 2, . . . , L}, the data structure 
explained in (31)–(36) suffices for determining the value of N . 
However, if �i �= 0 for any i ∈ {1, 2, . . . , L}, the entries of the uni-
tary vectors ei must inform not the integer remainders, but the 
interval in which the remainders lie given that the errors are con-
tinuous variables. Fig. 4 illustrates the assemblage of vectors ei , for 
i ∈ {1, 2, . . . , L}, in terms of subsections 3.1 and 3.2. Hereafter, each 
entry in ei is determined in accordance with the model of Fig. 4(b), 
i.e., the entry that satisfies the criterion in terms of ri assumes the 
value 1, while the others remain with value zero. In this paper, 
the interval is 1/4 for each entry. Hence, while in subsection 3.1 
all vectors ci ∈ Z D , now ci ∈ Z 4D due to the fact that the vector 
ei ∈ Z

4Mi . The length 1/4 is chosen as an example, so that other 
implementations of the here proposed method can have different 
values for this length. Note that in (a) the ri stand for a discrete 
variable, whereas in (b) the ri are continuous variables due to the 
fact that N is also a continuous number.

In the proposed KME-CRT with errors in the remainders, all r̃i

and Mi are normalized to the case M = 1, so that Mi = �i , for 
i ∈ {1, 2, . . . , L}. This is achieved by dividing all rows in (6) by M
as in (37),
Algorithm 3 Proposed Kroenecker Based Mapping Vector for ME-
CRT.

1: procedure Proposed KME-CRT (Mi , ̃ri , si , H)
2: v ← zeros[4D × 1] % v is the mapping vector
3: to be obtained
4: for i = 1 : L do
5: ei ← zeros[4�i × 1]
6: ei( ji) ← 1, where ji = �4ri�
7: for k ∈ {−2, −1, 1, 2} do
8: if ji + k �= 4�i then
9: ei(( ji + k) mod 4�i) ← 1

10: else ji + k = 4�i

11: ei(4�i) ← 1
12: Yi ← {1, 2, . . . , i − 1, i + 1, . . . , L}
13: wi = u�Yi (1)

⊗ u�Yi (2)
⊗ · · · ⊗ u�Yi (L−1)

% Eq. (34)

14: ci ← wi ⊗ ei % Eq. (33)

15: for p = 1 : 4D do
16: if

∏L
i=1 ci(p) = 1 then % Conditions stated in (36)

17: v(p) ← 1

18: p ← find(v(p)) % p informs which rows of v have all elements 1
19: Lp ← length(p)

20: p ← p/4 − 1/4 % As each row of v in fact spans 1/4.
21: Lq ← �1/4si�
22: Q ← zeros[Lq × Lp ]
23: W ← zeros[Lq × Lp ]
24: for j1 = 1 : Lq do
25: for j2 = 1 : Lp do
26: Q( j1, j2) ← p( j2) + ( j1 − 1)si

27: for i = 1 : L do
28: if H = 1 then % Hypothesis of constant variances
29: W( j1, j2) ← W( j1, j2) + (d�i (Q( j1, j2) mod �i), ̃r/M)2

30: else H = 2 % Hypothesis of σ 2
i as a function of Mi

31: W( j1, j2) ← W( j1, j2) + (d�i ((Q( j1, j2) mod �i), ̃r/M)/�i)
2

32: [x1, x2] ← min(W)

33: [∼, x3] ← min(x1) % W(x2(x3)) is the minimal deviation in the ME algo-
rithm

34: N̂ = MQ(x2(x3), x3) % Hence, Q(x2(x3)) is the optimal value of N/M .

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Nm mod �1 = r̃1/M,

Nm mod �2 = r̃2/M,

...
...

...

Nm mod �L = r̃L/M,

(37)

where Nm = N/M . The assemblage of ei ∈ Z
4Mi , for i ∈ {1, 2, . . . , L}, 

is modified to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ei(p) = 1, if p = �4ri�
For k ∈ {−2,−1,1,2} do

ei(p) = 1, if p = (�4ri� + k) mod 4�i and �4ri� + k �= 4�i,

ei(p) = 1, if p = 4�i and �4ri� + k = 4�i,

End For

ei(p) = 0, otherwise,

(38)

where �.� stands for the ceil operator, which turns the input num-
ber to next integer towards plus infinity. Eq. (38) adapts (31) for 
the case of errors in the remainders.
Fig. 4. Assemblage of vectors ei , for i ∈ {1, 2, . . . , L}, (a) in terms of subsection 3.1 and (b) in terms of subsection 3.2, where the value 1 is inserted in the entry that can 
contain the true ri . In (a), the ri stand for discrete values, whereas in (b) the entries refer to the interval of ri , which are now continuous variables.
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Algorithm 3 specifies the routine for the estimation of N̂ in 
the proposed method for remainders with errors. The set � ∈
{�1, �2, . . . , �L} has its values selected with aid of the same aux-
iliary set Y used in (34). The input arguments are Mi, ̃ri, si, H , 
where si is the incremental step of the ME iterations and H is the 
hypothesis of error variances, i.e., H = 1 for σi = τ/3, and H = 2
for σi = (Miτ )/(3M1), for i ∈ {1, 2, . . . , L}. The corresponding ad-
justment is between lines 33 and 37 of the Algorithm, following 
the stated in (23) and (24) respectively.

Note that, according to the commands in lines 32, 33 and 34 
of the Algorithm 3, the proposed method evaluates the minimal 
squared errors in terms of the M-Estimators in (23) and (24). A set 
of numbers is tested in intervals in accordance with the incremen-
tal step si , which is the resolution of test. It is indeed a test made 
over discrete values, however, any real number can be sufficiently 
approximated with a properly chosen small incremental step si .

3.3. Tensorial models for the proposed mapping vector

In this Subsection, we present equivalent approaches to the set 
of Eqs. (31)–(36) involving tensorial operations as a way of en-
riching the proposed technique. In Subsection 3.3.1, we explain the 
sequence of operations for the error-free case of Subsection 3.1, 
and in Subsection 3.3.2, for the case of a system with erroneous 
remainders of Subsection 3.2.

According to [43], the n-mode product between a tensor A ∈
R

x1×x2×···×xN with a matrix E ∈ R
J×xn over the n-th dimension of 

A is denoted by

B = A ×n E, (39)

where B ∈ R
x1×x2×···×xn−1× J×xn+1×···×xN . Note that, in terms of ma-

trix based expressions, we have

B(n) = EA(n), (40)

where the subscript in tensor B(n) denotes that it is unfolded over 
its n-th dimensional fibers [43]. Hence, A(n) and B(n) are matrices, 
so that the first size of A(n) is xn , while in B(n) the first size is J . 
The second size of A(n) and B(n) is the product of all remaining 
dimensions of the original tensor, i.e., (x1x2 . . . xn−1xn+1 . . . xN ).

One of the properties of the n-mode product shown in (39) is 
that one can select the entries of a tensor over one of its dimen-
sions by means of a diagonal matrix whose elements are properly 
chosen. If the matrix used in (39) is E ∈ R

xn×xn where E(l, l) = 1, 
for 1 ≤ l ≤ xn , and all other entries are zero, then the resulting ten-
sor B(n) is{

B(x1, x2, . . . , xn, . . . , xN) = A(x1, x2, . . . , xn, . . . , xN), if xn = l,

B(x1, x2, . . . , xn, . . . , xN) = 0, otherwise.

(41)

As an example, let the tensor A ∈ R
5×6×4 and the matrix E ∈

R
5×5 have an n-mode product. If E(i, j) = 0 for i �= j and the main 

diagonal of E is the vector

e = [
0 0 0 1 0

]
, (42)

then

E =

⎡
⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎦ , (43)

and the n-mode product of (39) is written as B = A ×1 E. Fig. 5
provides a visual interpretation of this tensorial operation, with the 
Fig. 5. Visual interpretation of the tensorial n-mode product B = A ×1 E. By con-
vention, original entries are in gray and zero values in white.

Algorithm 4 Proposed Tensorial KME-CRT for remainders free of 
errors.

1: procedure Tensorial KME-CRT 1 (Mi , ri )
2: T ← ones([Mi ])
3: for i = 1 : L do
4: Ei ← diag{ei} % Vectors ei defined in (31)

5: T (1) ← T ×1 E1

6: M ′
i ← Mi

7: for i = 2 : L do
8: M ′

i ← circshift{M ′
i , (L − 1)}

9: v ← T (i−1)
(L+1)

10: Reshape the vector v into a tensor T (i) ∈N
[M ′

i ]
11: T (i) ← T (i) ×1 Ei

12: v ← T (L)
(L+1)

13: N ← find{v}

original entries in gray and zero values in white. The diagonal of 
E is applied over the first dimensions, i.e., column-wise. Tensor A
has its entries in the fourth slice of the first dimension preserved, 
while all other entries are set to zero, yielding thereby tensor B .

3.3.1. Tensorial model for the error-free case
The tensorial algorithm for the proposed KME-CRT starts with 

the moduli Mi and the remainders ri . Initially, we set up a ten-
sor T ∈ Z

M1×M2×···×ML , with T ( j1, j2, . . . , jL) = 1, for all i ∈
{1, 2, . . . , L} and ji ∈ {1, 2, . . . , Mi}, i.e., the value 1 in all entries. 
Now define matrices Ei ∈ Z

Mi×Mi following

Ei = diag{ei}, (44)

using the vectors ei defined in (31). Algorithm 4 shows the se-
quence of steps in order to accomplish the calculation of N . Note 
that, in line 8, the circshift(a, j) command makes a circular shift 
over a vector a ∈R

L as in

circshift(a, j) = [
a(L − j + 1 : L) a(1 : L − j)

]
, (45)

while, in line 9, T is unfolded in its (L + 1)-th dimension, yielding 
vector v.

As visual example of application for Algorithm 4, let a CRT sys-
tem with L = 3 and M1, M2, M3 be generic moduli. The tensor 
T ∈ Z

M1×M2×M3 is set up with all entries 1. Fig. 6 shows the se-
quence of steps in this specific case. Note that, along the three 
steps (a), (b) and (c), the tensor T (i) , i ∈ {1, 2, 3}, is the reshape of 
vector v as stated in line 10 of Algorithm 4. The n-mode products 
along the first dimension successively filter the elements of the re-
shaped tensor T (i)(x1, x2, x3) which are located at the slice x1 = ri

at each step i.
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Fig. 6. Example of application of Algorithm 4 with L = 3. The tensor T (i) , i ∈ {1, 2, 3}, is at each step i the reshape of vector v as stated in line 10. The n-mode products 
along the first dimension filter the elements of the reshaped tensor T (i)(x1, x2, x3) where x1 = ri .

Fig. 7. Example of application of Algorithm 5 with L = 3, providing a version of Fig. 6 for the case of remainders with errors as described in Algorithm 5. Note that the final 
vector is p which, differently of vector v in Fig. 6, has several intervals of possible locations of N̂ .
3.3.2. Tensorial model for the case of remainders with errors
In order to adapt the Algorithm 3 for the case when there are 

errors in the remainders, we rewrite matrices Ei ∈ Z
4Mi×4Mi as in 

(44), however now using vectors ei ∈ Z
4Mi defined as in (38). Al-

gorithm 5 gives the pathway for the best estimation of N̂ . Note 
that, by the end of Algorithm 5, the last steps of Algorithm 3 are 
needed to achieve the definitive estimation.

The routine in Algorithm 5 is shown in Fig. 7, where the 
scheme in Fig. 6 is adapted in order to provide the estimation of N̂
when at least one of the errors is not equal to zero. Note that the 
final vector is p which, differently of vector v in Fig. 6, has several 
intervals of possible locations of N̂ , and that the first dimension of 
the reshaping tensor T (i) at each stage i is 4Mi .

3.4. Possibility of correct estimation when M/4 ≤ τ < M/2 by means 
of the proposed mapping vector

In accordance with [13,44], CRT is a robust method when the 
remainders have an error bound τ and the reconstruction error 
is also bounded to |N − N̂| ≤ τ . Note that, as extensively stud-
ied in the literature, the maximum value for τ is τ < M/4 as 
Algorithm 5 Proposed Tensorial KME-CRT for remainders with er-
rors.

1: procedure Proposed Tensorial KME-CRT 2 (Mi , ̃ri )
2: Mi(1) = 4Mi(1)

3: T ← ones([Mi ])
4: for i = 1 : L do
5: Ei ← diag{ei} % Vectors ei defined in (38)

6: T ← T ×1 E1

7: M ′
i ← Mi

8: for i = 2 : L do
9: M ′

i(1) ← M ′
i(1)/4

10: M ′
i ← circshift{M ′

i , (L − 1)}
11: M ′

i(1) ← 4M ′
i(1)

12: v ← T (L+1)

13: Reshape the vector v into a tensor T (i) ∈ N
M ′

i

14: T (i) ← T (i) ×1 Ei

15: p ← find{T (L)
(L+1)

}
16: Resume Algorithm 3 at line 24

given in (8). In [37], the sharpness of the boundary in (8) is il-
lustrated by means of an example. The boundary in (8) is indeed 
the sufficient one in order to ensure that all folding integers ni are 
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Fig. 8. Magnitudes of the errors �i along the distance M , where (a) the chosen 
reference remainder is r2, when all distances respect the limit |�2 − �i | < M/2, 
whereas in (b) r1 is erroneously selected as the reference remainder, yielding 
|�1 − �4| > M/2, which violates the criterion in (46), that is a necessary and suf-
ficient condition for solving the CRT system. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

correctly reconstructed. However, the actual boundary from a the-
oretical standpoint is given by

− M

2
≤ �1 − �i <

M

2
, (46)

so that (46) is automatically guaranteed when τ < M/4, as exten-
sively proven in [1,8,13,44]. Thus, while (8) is a sufficient condition 
for the uniqueness of the solution of the folding numbers ni , (46)
is the necessary and sufficient one, constituting the general bound-
ary for a robust CRT.

The main drawback in working with (46), in accordance with 
[1,8], is that it involves two remainder errors, which are in prac-
tice hard to check. That is the reason why the limit of (8) is 
largely adopted in the literature instead of (46). On the other hand, 
a consequence of using (8) is that selecting the remainder of least 
variance is crucial for the success of the CRT methods based on a 
reference remainder [1,13]. In order to illustrate this aspect, Fig. 8
shows an example with the remainders errors of a CRT system of 
L = 4, �i ∈ R, for i ∈ {1, 2, 3, 4}, normalized at each length M . In 
this example, we assume M/4 < |�3| < M/2 and M/4 < |�4| <
M/2. In Fig. 8(a), the chosen reference remainder is r2, so that 
|�2 − �i | < M/2, with i ∈ {1, 3, 4}. In Fig. 8(b), an alternative case 
is shown where r1 is erroneously selected as the reference remain-
der. Suppose, as suggested by the figure, that |�1 − �4| > M/2
through the continuous red line, i.e., inside the length M . In or-
der to obtain |�1 − �4| < M/2, the resulting minimal distance 
|�1 −�4| must be calculated through the green dashed line to the 
left. However, computing the distance |�1 −�4| in this way corre-
sponds to changing the remainder error �4, yielding �′

4 = �4 − M , 
whereas �4 is the true deviation. Since originally r̃4 = r4 + �4, 
the change in the pathway entails r4 + �′

4 + M = r′
4 + �′

4, where 
r′

4 = r4 + M , thus erroneously changing the value of the remainder 
r4. As a consequence, the choice of r1 as the reference remainder 
in this example leads to the violation of the rule in (46).

We now explain how the proposed mapping vector addresses 
this problem. Lines 5 to 11 of Algorithm 3 are dedicated to set 
up vectors ei ∈ Z

4Mi , for i ∈ {1, 2, . . . , L}, while lines 13 and 14 
provide their successive concatenations until the vectors ci are as-
sembled. As explained with Fig. 4, each vector ei contains entries 
(or slots) that inform the occurrence of the r̃i value in terms of 
slots whose length is 1/4. In accordance with (38), two slots on 
each side of the original entry in ei are also filled with 1. As a 
consequence, any possible slot corresponding to the correct ri has 
1 as its entry in ei , since two slots cover 1/2 on each side of the 
entry related to r̃i . Fig. 9 shows how the criterion in (46) is main-
tained. Independently of how near to the border of the original 
slot the value r̃i is, the values within the distance ±M/2 have also 
entries 1. Points a and b in Fig. 9 illustrate two hypotheses for the 
Fig. 9. Assemblage of vector ei in terms of r̃i value, with two entries on each side 
of the original entry also filled with 1. Points a and b are examples of near border 
points, and the points a′ and b′ are in any case within a slot of value 1.

location of the value ri near border points. Points a′ and b′ , which 
show the spatial boundary for the value of r̃i in each case, with 
a maximum deviation of M/2 or two slots, are also within a slot 
of value 1, and their interval are then included in the M-Estimator 
test of either (23) or (24) due to (38).

After assembling all vectors ei ∈ Z
4Mi and ci ∈ Z

4D , commands 
in lines 16 and 17 of Algorithm 3 yield the scheme in Fig. 10, 
where each vector ci is set up according lines 13 and 14 of the 
same algorithm. As a consequence, only a restricted set of en-
tries in the resulting vector v ∈ Z

4D is obtained. Since v contains 
solely the intersection of all 1 entries from the vectors ci , for 
i ∈ {1, 2, . . . , L}, the cardinality of these entries indicate in which 
points of the dynamic range the application of the M-Estimator is 
to be made, thus constituting the mapping vector v over the dy-
namic range D . Note that there are many intersections of this type 
throughout the vector v, such that in Fig. 10 only one intersection, 
p1, is shown due to practical reasons.

As a result of schemes in Figs. 9 and 10, every value ri that 
follows |ri − r̃i | ≤ M/2 is considered for the analysis of the M-
Estimator. Therefore, the criterion in (46) is fully preserved, and 
the reconstruction of N is possible without necessarily choosing 
the best reference remainder. Note that there is no guarantee the 
value of N̂ that minimizes (23) or (24) reproduces the real value 
of N . However, the value of N is necessarily in the vicinity of at 
least one entry of the vector p, which informs the cardinalities 
of the mapping vector v in accordance with the line 18 in Algo-
rithm 3.

4. Experiments and results

In this section, we first develop an example with an undersam-
pling system in subsection 4.1. In subsection 4.2, results of general 
simulations are presented for the case of σ1 = σ2 = · · · = σL and, 
in sequel, for the case of σi = μ�i , for i ∈ {1, 2, . . . , L}. In subsec-
tion 4.3, we present a comparison of the computational cost of 
CFR-CRT, MLE-CRT and the proposed KME-CRT.

4.1. System validation – example

In a system with L = 3 sensors, the sampling frequencies 
are Mi ∈ {55 kHz, 65 kHz, 85 kHz}. The impinging frequency 
value N is any real number within the dynamic range, 0 <
N < 12.1550 MHz, and must be estimated. Each sensor reads 
the peaks in the DFT of the frequency N , whose values are 
ri ∈ {17.81 kHz, 15.45 kHz, 13.24 kHz}, yielding the system⎧⎪⎨
⎪⎩

N mod 55 = 17.81,

N mod 65 = 15.45,

N mod 85 = 13.24.

(47)

Prior to further steps, proceed to the division of the original 
system as in (47) by M , the GCD of all moduli Mi . In (47), M = 5, 
yielding
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Fig. 10. Assemblage of vectors ci . Only a restricted set of entries in v are to be tested with the M-Estimator. In this example, the intersection of all entries of the same 
cardinality with value 1 is indicated in yellow. Note that there are many intersections of this type throughout the vector v, while in this Figure only the first one, p1, is 
shown.
⎧⎪⎨
⎪⎩

Nm mod 11 = 3.562,

Nm mod 13 = 3.09,

Nm mod 17 = 2.648,

(48)

where Nm = N/M . Note that in (48) M = 1, and thus Mi = �i , for 
i ∈ {1, 2, 3}.

We assemble vectors e1 ∈ Z
44, e2 ∈ Z

52 and e3 ∈ Z
68 with 

zeros in all entries. In sequel, we make e1(15) = 1, e2(13) = 1
and e3(11) = 1, filling with value 1 also the following entries: 
e1(13) = e1(14) = e1(16) = e1(17) = 1, e2(11) = e2(12) = e2(14) =
e2(15) = 1 and e3(9) = e3(10) = e3(12) = e3(13) = 1. Such steps 
correspond to lines 4–13 of Algorithm 3. By this moment, we have 
the definitive ei , for i ∈ {1, 2, 3}.

We set up the mapping vector v ∈ Z
9724 with zero in all entries. 

For i ∈ {1, 2, 3}, we organize the vectors v1 in (49), v2 in (50) and 
v3 in (51),

v1 = u13 ⊗ u17 ⊗ e1, (49)

v2 = u11 ⊗ u17 ⊗ e2, (50)

v3 = u11 ⊗ u13 ⊗ e3, (51)

where uk is defined as in (32).
We now apply (36) in order to obtain mapping vector v in ac-

cordance with the lines 18–22 of Algorithm 3. With line 23, we 
extract the cardinality of such entries in v, which returns the fol-
lowing vector p ∈ Z

8 in (52),

p′ = [
13 895 896 897 6877 6878 6879 7761

]
. (52)

Line 25 of Algorithm 3 converts p of (52) into

p′ = [
3 223.5 223.75 224 1719 1719.25 1719.5 1940

]
.

(53)

We choose si = 0.02, thus avoiding that any final estimated N̂
lie further than 0.01 from the optimal point. The determination of 
the optimized value of si is beyond the scope of this paper, but it 
suffices to note that infinite other values of si are possible. Clearly, 
the smaller the si , the higher the accuracy, but also the compu-
tational cost, since smaller si entails more values to test in each 
selected slot. On the other hand, shortening the interval 1/4 yields 
more resultant cells of test, yet of smaller length. All in all, we 
have in the choice of the length (in our case, 1/4) and incremental 
step si two tuning parameters that aid us to control the complex-
ity of our system. We then set the matrix Q ∈ R

13×8, whose values 
are shown in (54). The first row of Q is p′ in (53).
Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.00 223.50 223.75 224.00 1719.00 1719.25 1719.50 1940.00
3.02 223.52 223.77 224.02 1719.02 1719.27 1719.52 1940.02
3.04 223.54 223.79 224.04 1719.04 1719.29 1719.54 1940.04
3.06 223.56 223.81 224.06 1719.06 1719.31 1719.56 1940.06
3.08 223.58 223.83 224.08 1719.08 1719.33 1719.58 1940.08
3.10 223.60 223.85 224.10 1719.10 1719.35 1719.60 1940.10
3.12 223.62 223.87 224.12 1719.12 1719.37 1719.62 1940.12
3.14 223.64 223.89 224.14 1719.14 1719.39 1719.64 1940.14
3.16 223.66 223.91 224.16 1719.16 1719.41 1719.66 1940.16
3.18 223.68 223.93 224.18 1719.18 1719.43 1719.68 1940.18
3.20 223.70 223.95 224.20 1719.20 1719.45 1719.70 1940.20
3.22 223.72 223.97 224.22 1719.22 1719.47 1719.72 1940.22
3.24 223.74 223.99 224.24 1719.24 1719.49 1719.74 1940.24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(54)

We then calculate W according to the lines 29–40 of the Algo-
rithm 3, entrywise in terms of Q. Hence, given every entry Q(i, j), 
the entry W(i, j) informs the respective error, either according to 
(23) or (24).

As a last step, search the minimum absolute value in W. Since 
this is W(2, 3) = 0.1605 and M = 5, N̂ = 5Q(2, 3) = 5 × 223.77 =
1118.85, i.e., the estimated frequency value is N̂ = 1118.85 kHz. 
This value lies in the tolerance interval around the true value N =
1120 kHz, as |N − N̂| < M/2. It is worth it to remark that the result 
of the same system given by CFR-CRT is N̂ = 8597.2 kHz and by 
MLE-CRT is N̂ = 8597.1 kHz, values significantly distant from the 
true N .

4.2. Results of experiments in terms of errors variance

Next, we compare the results of the proposed KME-CRT with 
the state-of-the-art CFR-CRT and MLE-CRT for the case of same 
and different variances of errors. This comparison is based on the 
fact that CFR-CRT is the state-of-the-art method for constant vari-
ances of the errors �i , whereas MLE-CRT is suitable for different 
variances of �i , i ∈ {1, 2, . . . , L}.

In both scenarios, we also compare the proposed KME-CRT with 
the complete ME, which is the application of the ME routine over 
the entire dynamic range D without the help of the Kroenecker 
mapping vector. Hence, with the complete ME, the total number of 
iterations is D/si . This comparison is performed in order to make 
clear how effective is the proposed KME-CRT due to the Kroe-
necker product of the specified vectors.

The evaluation of the computational time required to perform 
the proposed KME-CRT, the CFR-CRT and the MLE-CRT is carried 
out in Matlab by means of commands tic and toc, which are used 
to measure the time the computer takes to perform a sequence of 
commands. The processor used to undertake the measurements is 
a dual core i7-5500U at 2.4 GHz, with double precision in Matlab

settings. We do not employ parallel structures as the goal is to il-
lustrate the total required computational effort. Nevertheless, we 
highlight that CFR-CRT and MLE-CRT can be deployed in parallel 
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Fig. 11. Percentages of successful estimations of N with the proposed KME-CRT, the 
CFR-CRT [1], MLE-CRT [4] and complete ME for constant variances in the errors.

Table 1
% of Correct N̂ Estimation with 2 or 3 Remainders with 
Errors M/4 ≤ |�i | < M/2 over 105 Realizations.

CRT method 2 remainders 3 remainders

Proposed KME-CRT 63.49% 8.01%
CFR-CRT 60.58% 7.41%
MLE-CRT 61.81% 7.41%

structures. The proposed KME-CRT can be executed in a parallel 
fashion with regards to the vectors assemblage of (49)–(51) and 
in testing each value of matrix Q. However, since several possible 
arrangements are possible which depend on the number of pro-
cessors available, for the sake of simplicity we execute all routines 
sequentially.

In our simulations, the moduli are �i ∈ {11, 13, 17}. Recall that, 
if M �= 1, the previous normalization with regards to M is as-
sumed. Errors �i are generated under the Gaussian distribution 
in the range [N − τ , N + τ ] for each value of τ . At each iteration, 
a real valued N with two decimals is randomly chosen from 0 up 
to D = 2431 over 105 iterations. The estimation is accepted as cor-
rect when N − M/2 ≤ N̂ ≤ N + M/2.

In Fig. 11, the percentages of correct estimation of N are shown 
for constant variances for the proposed KME-CRT, CFR-CRT [1], 
MLE-CRT [4] and the complete ME. Throughout the values of τ , 
the percentages of correct calculations of N are higher with the 
proposed KME-CRT than with CFR-CRT or MLE-CRT. The results 
are shown for τ ∈ {0.25, 0.30, 0.35, 0.40, 0.45, 0.50} since for τ ∈
{0.05, 0.10, 0.15, 0.20} the correct estimation is 100% for all the 
three compared methods.

Defining the root mean squared error of N as

NRMSE =
√

E{|N̂ − N|2}, (55)

Fig. 12 shows the results of NRMSE for the proposed KME-CRT, CFR-
CRT, MLE-CRT and the complete ME. The smallest values of NRMSE
are in the proposed KME-CRT and complete ME results, even con-
sidering the interval where the limit τ < M/4 is observed, i.e., 
τ ∈ {0.05, 0.10, 0.15, 0.20, 0.25}.

When all variances are presumably equal, Table 1 informs the 
percentage of correct estimation of N in the case of two or three 
moduli with error �i that are in the range M/4 ≤ |�i | < M/2. The 
results are derived from 105 realizations.

The same analysis is repeated, now focusing on the case of 
σi �= σ j , for i, j ∈ {1, 2, . . . , L}, i �= j, and establishing σi = τ Mi . In 
Fig. 12. NRMSE values with the proposed KME-CRT, the CFR-CRT [1], MLE-CRT [4]
and complete ME for constant variances in the errors.

Table 2
Sets of moduli for the results shown in Fig. 15 for τ =
0.45.

Set of moduli Moduli of the CRT system

1 Mi ∈ {8,11}
2 Mi ∈ {8,11,13}
3 Mi ∈ {8,11,13,15}
4 Mi ∈ {8,11,13,15,17}

Fig. 13(a), percentages of successful estimations of N with the pro-
posed KME-CRT, the CFR-CRT [1], MLE-CRT [4] and complete ME 
for different σ 2

i , with i ∈ {1, 2, . . . , L}. In 13(b), the values around 
τ = 0.3 in different scale. Throughout the values of τ , the per-
centages of correct calculations of N are higher with the proposed 
KME-CRT than with CFR-CRT or MLE-CRT. However, the results of 
the proposed KME-CRT and the MLE-CRT present significant prox-
imity.

Fig. 14 shows the evolution of NRMSE values obtained via (55)
for the proposed KME-CRT, CFR-CRT, MLE-CRT and the complete 
ME. The smallest values of NRMSE are in the proposed KME-CRT 
and complete ME results. Note that once more the results of the 
proposed KME-CRT and MLE-CRT are very similar.

We have also tested the performance of the methods for differ-
ent sets of moduli through 104 iterations with different variances 
in errors considering only the case τ = 0.45. Table 2 shows the 
sets of moduli, which are analogous to sensors sampling rates if 
the CRT system is applied to undersampling systems.

Finally, we monitor the disparity between the performances 
of the proposed KME-CRT and complete ME. At each of the 
105 realizations, we count the times in which the proposed 
KME-CRT returns a successful estimation but the complete ME 
does not, and vice versa, summing it to each entry correspond-
ing to each value of τ . Over 105 realizations, and in each τ ∈
{0.25, 0.30, 0.35, 0.40, 0.45, 0.50}, it is possible to conclude that 
the proposed KME-CRT and complete ME have the identical perfor-
mance for practical applications. As a consequence, the proposed 
KME-CRT provides an optimized version of complete ME.

4.3. Computational cost

The comparison of computational cost of the proposed KME, 
the CFR-CRT and the MLE-CRT comprises the following cases: 
Case 1 with Mi ∈ {7, 11}, Case 2 with Mi ∈ {7, 11, 13}, Case 3 with 
Mi ∈ {7, 11, 13, 15}, Case 4 with Mi ∈ {7, 11, 13, 15, 17}, and Case 5 
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Fig. 13. In (a), percentages of successful estimations of N with the proposed KME-CRT, the CFR-CRT [1], MLE-CRT [4] and complete ME for different σ 2
i , with i ∈ {1, 2, . . . , L}. 

In (b), the values around τ = 0.3 in different scale.
Fig. 14. NRMSE values with the proposed KME-CRT, the CFR-CRT [1], MLE-CRT [4]
and complete ME for different σ 2

i , with i ∈ {1, 2, . . . , L}.

with Mi ∈ {7, 11, 13, 15, 17, 19}. In each case, the time of compu-
tational processing is taken as the mean of 103 realizations. In se-
quel, we highlight the reduction of computational effort of the pro-
posed KME-CRT in terms of complete ME. All premises adopted in 
Subsection 4.2 with regards to time measurements are maintained, 
such as avoiding parallel settings and the Matlab commands used.

Table 3 shows the time of computational processing in mil-
liseconds (ms) for each case. The incremental step of the proposed 
KME-CRT is kept as si = 0.02. The time of processing for the pro-
posed KME-CRT increases significantly with the addition of further 
values in Mi as all ci ∈ Z

4D , i.e., vectors ci have the length of the 
dynamic range. Due to this fact, KME-CRT is supposed to be suit-
able for systems with low number of sensors. Table 3 also includes 
the average time processing of tensorial version of the proposed 
KME-CRT for comparison.

Sets of few moduli are frequently encountered in the literature, 
as for instance in simulations where L = 2 as in [2,6,35,44], L = 3, 
as in [9,12,38,45,46], and L = 4 as in [5]. Even in [1], L assumes 
different values, from 3 up to 12, hence starting with low values. 
The case of few remainders is thus a matter of attention in the 
state-of-the-art, which is the most indicated case of application
Fig. 15. % of Correct Estimations with the CFR-CRT [1], MLE-CRT [4], the proposed 
KME-CRT and complete ME for the sets of moduli shown in Table 2 with τ = 0.45.

for the proposed KME-CRT. One can also notice that the proposed 
tensorial version of the KME-CRT has a lower computational time 
than the purely vectorial form in the cases L = 4 and L = 5, i.e., for 
greater values of L.

In comparison with the complete ME, however, the proposed 
KME-CRT shows great capability of computational economy as 
shown in Table 4, where the number of rows filtered by the pro-
posed KME-CRT and the respective reduction of computational ef-
fort are shown. The economy in comparison with complete ME is 
based on the fraction of the filtered rows in relation to the com-
plete number of rows 4D in v.

For instance, in case 4, v ∈ Z
1021020, but at maximum 35 rows 

of v can have 1 as value. This filtering reduces the computational 
effort to 35/1021020 = 0.00343% of the undertaken by complete 
ME. Nevertheless, the result that the proposed KME-CRT delivers 
is the same of the complete ME, as shown in subsection 4.2.

5. Conclusion

In this paper a novel method for estimating a real number us-
ing the CRT was presented. The method is based on an ME scheme
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Table 3
Time of computational processing in milliseconds (ms) averaged over 1000 realizations.

Moduli set Proposed KME Proposed tensor-KME CFR MLE ME

1: {7,11} 0.124 65.2 0.128 0.0787 0.496
2: {7,11,13} 1.3 69.3 0.152 0.0868 8.7
3: {7,11,13,15} 21.2 65.5 0.167 0.0898 179.4
4: {7,11,13,15,17} 430.2 159.7 0.291 0.157 4259.1
5: {7,11,13,15,17,19} 9966.6 2515.9 4.2 0.615 109508.4

Table 4
Reduction of computational effort in terms of rows – Proposed KME-CRT and complete ME.

Case Proposed KME-CRT – rows of test Economy – complete ME

1: Mi ∈ {7,11} 7 97.7272%
2: Mi ∈ {7,11,13} 11 99.7352%
3: Mi ∈ {7,11,13,15} 19 99.9684%
4: Mi ∈ {7,11,13,15,17} 35 99.9965%
5: Mi ∈ {7,11,13,15,17,19} 67 99.9996%
that is optimized by means of a mapping vector that indicates in 
which parts of the dynamic range the search for the real num-
ber should occur. This mapping vector is assembled via tensorial 
operations, i.e., Kroenecker product of previously defined vectors. 
We also provide a version of the mapping vectors based on tenso-
rial n-mode products, delivering in the end the same information 
of the original method. For its characteristics, it is suitable over-
all for CRT systems with few moduli, which in the case of sensors 
networks corresponds to low quantity of sensors.

In our proposal, the errors in the remainders of CRT system 
may have the same or different variances, allowing our work to 
be compared with state-of-the-art methods CFR-CRT [1] and MLE-
CRT [4]. According to results tested over 105 iterations, in the 
case of equal variances, the proposed KME-CRT is consistently su-
perior to the state-of-the-art methods in terms of percentage of 
correct estimations. On the other hand, with regards to the case 
of different variances, the superiority of our proposal is com-
paratively small, not outperforming the state-of-the-art MLE-CRT 
significantly. Hence, in this particular, both methods can be con-
sidered as of equivalent performances. However, for all that was 
shown, our proposed technique enhances the probability of esti-
mating an unknown number accurately even when the errors in 
the remainders surpass 1/4 of the greatest common divisor of all 
moduli. A drawback is that, as shown in Table 3, the computa-
tional cost of the proposed KME-CRT increases more than linearly 
and surpasses the costs of CFR-CRT and MLE-CRT in certain scenar-
ios.

The proposed KME-CRT was also compared with the complete 
ME, which by definition cannot be outperformed. KME-CRT has the 
same results of complete ME, while reduces their necessary com-
putational effort in at least 97%, thus offering a decisive advantage 
in terms of computational effort.

For future works, we envisage the need for optimization of the 
mapping vector as a searching method. Furthermore, errors with 
distributions different from the Gaussian one should be investi-
gated. Tensor based mapping vector routines of Algorithms 3 and 5 
are still under development and are also a matter of concern for 
future studies. In terms of CRT techniques, the possibility of apply-
ing the mapping vector to the Multi-Stage Robust CRT and studies 
involving CRT in a probabilistic way, as in the case of unrestricted 
errors of [32], are also supposed to have a good applicability to-
wards the technique proposed here.
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