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Abstract—Array processing is an important topic in the signal
processing field. Many important signal processing techniques
such as Spatial Smoothing, Forward Backward Averaging and
Root-MUSIC, rely on antenna arrays with specific and precise
structures. Arrays with such ideal structures, such as a centro-
hermitian structure, are often hard to build in practice. Array
interpolation is used to enable the usage of these techniques with
imperfect (not having a centro-hermitian structure) arrays. Most
interpolation methods rely on methods based on least squares
(LS) to map the output of a perfect virtual array based on
the real array. In this work, the usage of Multivariate Adaptive
Regression Splines (MARS) is proposed instead of the traditional
LS to interpolate arrays with responses largely different from the
ideal using non-linear mapping functions.

Index Terms—array interpolation, multivariate adaptive re-
gression splines

I. INTRODUCTION

Antenna arrays are employed in a variety of signal pro-
cessing algorithms to estimate the direction of arrival (DOA)
of received signals. Ideally, these antennas should provide
isotropic responses in amplitude and in phase for their field of
view. For directional antennas, this is a somewhat achievable
goal. However, in order to estimate DOAs of incoming signals,
the antennas should ideally be isotropic.

Besides requiring isotropic responses, many DOA estima-
tion techniques such as IQML [1], Root-WSF [2] and Root-
MUSIC [3] rely on a Vandermonde or centro-hermitian array
response. Spatial smoothing (SPS) [4] and forward backward
averaging (FBA) [5] also require an array with a Vandermonde
and centro-hermitian response, respectively. On the other hand,
Estimation of Signal Parameters via Rotational Invariance
(ESPRIT) [6] demands a shift invariant array response.

Arrays with perfect Vandermonde, centro-hermitian, shift
invariant, or even isotropic responses are hard to obtain in
practice. Each antenna element has a unique response and the
antenna’s response can also be affected by mutual coupling.
In order to mitigate the effects of imperfect array responses,
the process of transforming real (i.e., not having the desired

response) array responses into desired virtual ideal array
responses by means of a model is also known as array
interpolation [7].

Different array interpolation methods have been proposed
to allow DOA estimation algorithms such as MUSIC [8] and
Root-MUSIC [3], [9] to be used in non-ideal arrays. Alter-
natives that allow the application of ESPRIT algorithm have
been presented in [10] and [11], however, these alternatives do
not allow SPS and FBA to be applied. In [12], an alternative
for applying ESPRIT with FBA and SPS was first presented.
This work was extended to the multidimensional case in [13].

All of the mentioned interpolation methods apply a least
squares (LS) step for building the model that represents the
virtual array based on the inputs of the real array. The LS
method is capable of providing good results for arrays with
responses close to the desired one such that the mapping
between the real and virtual arrays can be approximated lin-
early. However, a linear approximation might not be enough to
map the real response onto the virtual response with tolerable
transformation errors.

To tackle arrays with challenging geometries or challenging
responses a method capable of expressing non-linear relation-
ships between the real and the desired response is necessary.
This work proposes the application of an adaptive modeling
method which is capable of finding and properly modeling
non-linear mappings between real and virtual arrays in the
form of the Multivariate Adaptive Regression Splines (MARS)
[14] method. While the MARS approach offers benefits for
arrays with responses that strongly differ from the desired
response, it is computationally expensive and does not offer
large performance improvements over the linear approach for
arrays with a response close to the desired one. Therefore, this
work also proposes a method of selecting between the linear
and MARS approach based on the transformation error of the
linear approach.

The remainder of this work is divided as follows. Section
II presents the data model. Section III briefly details the



LS method for array interpolation. Section IV presents the
proposed MARS interpolation approach. Section V presents
a set of numerical simulations and discusses their results.
Finally, conclusions are drawn in Section VI.

II. DATA MODEL

We consider a set of d wavefronts impinging onto an
antenna array composed of M antenna elements. The received
baseband signal can be expressed in matrix form as

X = AS + N ∈ CM×N , (1)

where S ∈ Cd×N is the matrix containing the N symbols
transmitted by each of the d sources, N ∈ CM×N is the noise
matrix with its entries drawn from CN (0, σ2

n), and

A = [a(θ1),a(θ2), ...,a(θd)] ∈ CM×d, (2)

where θi is the azimuth angle of the i-th signal and a(θi) ∈
CM×1 is the array response (empirical measurement).

The received signal covariance matrix RXX ∈ CM×M is
given by

RXX = E{XXH} = ARSSAH + RNN, (3)

where (·)H stands for the conjugate transposition, E{·} is the
expectation operator, and

RSS =


σ2
1 γ1,2σ1σ2 · · · γ1,dσ1σd

γ∗1,2σ1σ2 σ2
2

...
...

. . .
γ∗1,dσ1σd γ∗2,dσ2σd · · · σ2

d

 , (4)

where σ2
i is the power of the i−th signal and γa,b ∈ C,

|γa,b| ≤ 1 is the cross correlation coefficient between signals
a and b. RNN ∈ CM×M is a matrix with σ2

n over its diagonal
and zeros elsewhere. An estimate of the signal covariance
matrix can be obtained by

R̂XX =
XXH

N
. (5)

III. LINEAR ARRAY INTERPOLATION

Array interpolation aims to estimate what signal would
have been received at an anenna array with a specific desired
geometry based on the signal that was received by a real
antenna array . Linear array interpolation is usually done
using a LS approach. The problem is set up as finding a
transformation matrix B that is given by

BAS = ĀS , (6)

where AS and ĀS are real and virtual array responses for
a given countable and discrete set of angles S, respectively.
Applying matrix B to a snapshot of received data y ∈ CM×1
can be done with a simple matrix multiplication, which is
equivalent to applying a linear model for each of the outputs
of the virtual antenna array. This linear model can be given

[y]m = [B]1,m [y]m+[B]2,m [y]m+ . . .+[B]M,m [y]m , (7)

where [·]i,j is the element of a matrix indexed by i and j, and
m ∈ {1, . . .M}.

This model is usually not capable of transforming the
response perfectly across the entire filed of view except for
the case where a large number of antenna elements is present
or a very small sector is used. Large transformation errors
often result in a large bias on the final DOA estimation, thus,
usually, the response region is divided into a set of regions
called sectors, and a different transform matrix is set up for
each sector (sector-by-sector processing).

IV. MARS ARRAY INTERPOLATION

For small sectors and arrays that have real responses that
do not differ strongly from the desired response, linear ar-
ray interpolation is capable of providing good results [15].
However, as the size of the sectors increases or as the real
responses differs strongly from the desired ones, the linear
approach might not be sufficient. For such cases, this work
proposes the application of a MARS approach to build a model
between the real and desired responses.

MARS was proposed in [14] as a non-parametric regres-
sion method that extended previous step-wise linear regres-
sion methods using splines. As a non-parametric regression
method, MARS does not require any knowledge of the rela-
tionship between the predictor and predicted data. It derives
all of its information from the data set itself and is, therefore,
a flexible regression method. The MARS model relies on
functions known as hinge functions. Hinge functions take the
form

h(k, z) =


max(0, k − z)

or
max(0, z − k)

(8)

where

max(a, b) =
a if a > b
b if a ≤ b , (9)

and k is known as a knot. Figure 1 exemplifies the two possible
forms of a hinge function with k = 3.
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Fig. 1: Example of hinge functions max(0, 3− z) and
max(0, z − 3)



While a hinge function is piece-wise linear, the MARS
model allows hinge functions to be multiplied together. There-
fore, the MARS model is capable of taking into account non-
linear relationships between the input and output variables.
Figure 2 shows how a non-linear relationship is created from
the multiplication of hinge functions h(1, z), h(2, z), and
h(3, z).

z
1 2 3 4 5

h
(1
,z
)h
(2
,z
)h
(3
,z
)

0

10

20

30

Fig. 2: Example of a non-linear relationship modeled by a
multiplication of hinge functions

The proposed MARS interpolation approach builds a pair
of models bRm and bIm for the real and imaginary parts of the
response of each of the antennas of the array. These models
can be written as a linear combination of basis functions

bRm(as(θ)) =

LR
m∑

l=1

cRlmF
R
lm(as(θ)), (10)

bIm(as(θ)) =

LI
m∑

l=1

cIlmF
I
lm(as(θ)),

where θs ∈ S , s = 1, . . . , |S|, m = 1, . . . ,M , cRlm and
cIlm are weighting constants, FRlm and F Ilm are basis functions
that represent either a hinger function or a multiplication of
hinge functions yielding a non-linear relationship. That is, if
the relationship between the real and virtual arrays can be
expressed linearly, FRlm and F Ilm are always a single hinge
function. If the relationship is non-linear, at least of of the
FRlm and F Ilm are is a multiplication of hinge functions. Each
model has a different number of LRm and LIm functions and
weighting constants.

Building a MARS model relies only on the data set and
is done recursively using a two step algorithm. In the first
step, the algorithm will introduce basis functions to the model.
Basis functions are added depending on their effect on the so-
called goodness-of-fit, where the basis function which impacts
the goodness-of-fit the most is introduced first. This step is
repeated until a bound on the model complexity is reached.
This bound is usually set so that the model generated on the
first step is over fitted.

In the second step, the complexity of the model is reduced
by removing the basis functions that have the least impact on
the accuracy of the model. The second step is important since
it reduces over fitting and leads to a more general model. The

models are compared using the Generalized Cross-Validation
(GCV), which is based in the mean-squared residual error and
a penalty based on model complexity. The GCV is given by

GCVR =

1
|S|
∑|S|
s=1(<{[a(θs)]m} − bRm(a(θs)))

2

(1− LR
m+p

LR
m−1

2

|S| )2
, (11)

GCVI =

1
|S|
∑|S|
s=1(={[a(θs)]m} − bIm(a(θs)))

2

(1− LI
m+p

LI
m−1

2

|S| )2
, (12)

where, bm is a model, for either the real or imaginary
parts of the response of the m-th antenna and [ās(θ)]m is the
corresponding real or imaginary part of the m-th element of
the steering vector ās(θ). |S| is the number of steering vectors
used to build the model, C is the number of basis functions
used for the model and p is a penalty factor. Different values
for p are discussed in [14], where a value of 3 is suggested
as a default value.

Since a model is built for the real and imaginary parts of
the response of each of the antennas, a total of 2M models
need to be created to interpolate the array using the MARS
approach. This process is computationally complex and can
be very demanding for large arrays. To use this approach in
an online system the models can be built in a initialization
step. Sectors of interest for the application of the MARS
interpolation can be selected and a model can be built only
for such sectors. Furthermore, in most cases, the antenna array
will have a response which is similar enough to the desired
response in some of its field of view so that LS approach
yields good results. Thus, the MARS approach can be used
only on portions of the field of view where the real response
is varies strongly from the desired one.

A possible way of deciding between the linear and the
MARS approach is by looking into the transformation error
when employing the linear approach. The error ε(S) of the
transform for a given sector S is defined as

ε(S) =

∥∥ĀS −BAS
∥∥
F∥∥ĀS∥∥F ∈ R+. (13)

Large transformation errors often result in a large bias on the
final DOA estimations. In order to reduce the transformation
error the size of the sectors used to calculate the transforma-
tion matrix can be reduced. This, however, may not always
be possible and may not always be enough to reduce the
transformation error to an acceptable threshold. In such cases,
the MARS approach can be employed.

The MARS approach is specially useful for arrays with a
small number of elements. As shown in (6), the degrees of
freedom of the linear approach are limited by the number
of antennas in the virtual array. It is possible to increase the
degrees of freedom by creating a virtual array with a larger
number of antennas, however, this will lead to a transformation
matrix that is ill conditioned and result in a large bias in the
DOA estimates. The MARS approach, on the other hand, can
build as many hinge functions and relationships between them



as necessary. While the MARS will still benefit from having
a larger array, since it provides more input variables for the
model, it is less sensitive to a reduction in the size of the array.

In order to properly estimate the DOAs the noise covariance
after the transformation needs to be known. This requires
that either the noise covariance prior to the estimation is
known, or that noise samples can be obtained prior to the
transmission of the signals of interest in order to estimate
the noise covariance at the antenna array. Once the noise
covariance is known, the MARS model can be applied in order
to estimate the noise covariance R̄NN at the output of the
transformation. The signal subspace can then be estimated by
applying the generalized eigen value decomposition (GEVD)
on the covariance matrix R̄XX, which is the covariance matrix
of the interpolated signal:

R̄XXE = R̄NNEΛ, (14)

where E ∈ CM×M is a matrix containing the generalized
eigenvectors and Λ ∈ RM×M is a matrix containing the
generalized eigenvalues in its diagonal. By selecting the eigen-
vectors related to the d̂ largest eigenvalues the so called signal
subspace Es ∈ CM×d̂ is constructed. This signal subspace
needs to be dewhitened or projected back onto the original
response subspace prior to estimation, this can be done by

Ēs = R̄NNEs. (15)

With this subspace estimate at hand, Total Least Squares (TLS)
ESPRIT [6] may be applied.

V. NUMERICAL RESULTS

The array response assumed in the simulations in this
work is constructed by randomly displacing the elements of
a uniform linear array (ULA). The array has inner element
spacing of b = λ

2 and the elements are displaced to a point
belonging to a circle with center on the original antenna
position and radius a = ελ

2 , where ε is the displacement error
in fractions of the wavelength λ of the carrier frequency of
the signal, as shown in Figure 3. For obtaining R̂XX we
use N = 100 snapshots and the root mean squared error
(RMSE) for DOA estimation is calculated with respect to
K = 1000 Monte Carlo simulations. Two signals impinging
from θ1 = 45◦ and θ2 = 15◦ with σ2

1 = σ2
2 = 1 and γ1,2 = 1

according to (4) are impinging on the array. FBA and SPS
are used to decorrelate the received signals prior to the DOA
estimation. The Signal to Noise Ratio (SNR) is defined as
SNR =

σ2
1+σ

2
2

σ2
n

. The RMSE can be given as

RMSE =

√√√√ 1

K

K∑
k=1

(
(θ̂1,k − θ1)2 + (θ̂2,k − θ2)2

)
, (16)

where θ̂i,k is the estimate of θi at the k-th Monte Carlo run.
The first metric analyzed is the behavior of the MARS and

linear approaches as the displacement error increases. Figure
4 shows the results for ε varying from 0.02 to 0.25 and a SNR
of 35 dB.

Fig. 3: Simulation array setup
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Fig. 4: Average of LS and MARS for varying ε

The results show that for small displacement errors the
MARS approach and the linear approach provide similar
results (please consider that the y-axis is in logarithmic scale).
Furthermore, as the displacement increases the bias for the
LS method increases much more rapidly than that of the
MARS approach since, for large displacement errors, a linear
relationship is not sufficient to create a proper model between
the real and virtual arrays.

Figure 5 presents the results for a varying number of
antennas with ε = 0.12. The results show that the MARS
method outperforms the LS method, especially in scenarios
where the number of antennas of the array is small. This is also
a beneficial scenario for MARS since it requires less models
to be created, therefore reducing the computational load.
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Fig. 5: Average performance of LS and MARS for varying number
of antennas and ε = 0.12

VI. CONCLUSION

This work proposed a way of performing array interpolation
using the MARS method. MARS is capable of expressing non-
linear relationships between the real and the desired response.
This work also discusses a method of deciding between
MARS and linear interpolation. While MARS is capable of
providing an improvement of the linear interpolation, it is



computationally expensive and does not always provide a large
improvement.

Numerical simulations were performed aiming to study
the performance of the proposed interpolation method. The
first set of simulations highlighted the benefits of MARS in
terms of DOA estimation bias when the real array response
strongly differs from the desired virtual response. For large
displacement errors in the array, the MARS approach achieved
a significant improvement in DOA estimation accuracy. A
second set of simulations highlighted the benefits of MARS
over the linear approach in scenarios were the array size is
small.
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