
UNSCENTED TRANSFORMATION BASED ARRAY INTERPOLATION

Marco A. M. Marinho⋆† João Paulo. C. L. da Costa⋆ Felix Antreich† Leonardo R. A. de Menezes⋆

⋆Department of Electrical Engineering, Universidade de Brasília (UnB), Brasília, Brazil

† German Aerospace Center (DLR), Inst. for Communications and Navigation, 82234 Wessling, Germany

email: marco.marinho@ieee.org, joaopaulo.dacosta@ene.unb.br, felix.antreich@dlr.de, leonardo@ene.unb.br

ABSTRACT

It is impossible to enforce exact responses for each sensor involved

in an antenna array. Important signal processing techniques such

as Estimation of Signal Parameters via Rotational Invariance (ES-

PRIT), Forward Backward Average (FBA) and Spatial Smoothing

(SPS) rely on sensor arrays with Vandermonde or centro-hermitian

responses. To achieve such responses array interpolation is often

necessary. In this work a novel way of performing array interpola-

tion while minimizing the transformation error using the Unscented

Transformation (UT) is presented. The UT provides a different

method for mapping interpolated regions and also exhibits a new

insight into array interpolation and its current limitations. A set of

numerical simulations presents promising results for array interpo-

lation employing the UT.

Index Terms— Array Interpolation, Array Mapping, Antenna Ar-

rays, Unscented Transformation

1. INTRODUCTION

Direction of arrival (DOA) estimation methods such as Iterative

Quadratic Maximum Likelihood (IQML) [1], Root-WSF [2] and

Root-MUSIC [3] rely on arrays with specific responses, Vander-

monde or centro-hermitian responses. Such methods offer benefits

over methods which do not require a specific array geometry such

as Maximum Likelihood (ML) [4, 5] or its iterative implementa-

tions such as the Expectation Maximization (EM) [6, 7, 8] and the

Space Alternating Generalized Expectation Maximization (SAGE)

[9, 10, 11] methods. Another important use of arrays with Vander-

monde or centro-hermitian responses is that they provide the mathe-

matical model necessary for the application of important tools such

as Spatial Smoothing (SPS) [12] and Forward Backward Averaging

(FBA) [13].

SPS and FBA are capable of providing “decorrelation” of received

signals. Correlated signals are very common in strong multi-path

scenarios, where copies of the same signal are received at nearly

the same time instance from different reflection or diffraction points.

Correlated signals heavily impact the performance of important ar-

ray signal processing algorithms. For instance, model order selection

methods [14, 15, 16, 17], used to estimate the number of received

signals, have their performance highly impacted by the presence of

correlated signals.

Exact Vandermonde and centro-hermitian responses are very hard

to achieve in real sensor array implementations. In [18] a solution

for mapping real and imperfect array responses into precise and de-

sired responses was presented, such mapping is known as array in-

terpolation. Array interpolation schemes rely on dividing the field of

view of the array response into smaller angular regions, called sec-

tors. For each of these sectors a transformation matrix is calculated

using the empirical knowledge of the real array response. The larger

the region transformed the larger will be the bias introduced due to

transformation imprecision. After the transformation, FBA or SPS

[19] and DOA estimation algorithms such as Root-MUSIC [20] can

be applied.

One problem with the approach used in [19, 20, 21, 22], is that

there is no guarantee with respect to what happens with signals re-

ceived from outside the angular region to which the transformation

matrix was calculated (out-of-sector signals). If the out-of-sector

signal is correlated with any possible in-sector signals they intro-

duces a large bias in the DOA estimation. In [23] and [24] this prob-

lem was first addressed by proposing a way to control the response

of out-of-sector signals.

A problem introduced when any set of noisy data is transformed

is that the noise changes its statistical properties. This problem can

be averted by applying a pre-whitening step before DOA estimation

algorithms such as MUSIC [25] and Root-MUSIC [3, 20]. Alterna-

tives that allows the application of Estimation of Signal Parameters

via Rotational Invariance (ESPRIT) algorithm [26] have been pre-

sented in [27] and [28], however, these alternatives do not allow SPS

and FBA to be applied. In [29] an alternative for applying ESPRIT

with FBA and SPS was first presented, relying on a signal based sec-

tor construction and discretization. This work was extended to the

multidimensional case in [30].

All the mentioned array interpolation approaches present a com-

mon problem, which is the in-sector and, when treated, the out-of-

sector regions that are discretized in order to calculate the transfor-

mation matrix. To the best of our knowledge, the discretization step

is, for the most part, not clearly discussed and sometimes this step

is only shown within the general context. In this work we propose

the usage of the Unscented Transformation (UT) to systematically

discretize several sectors of the field of view of the array in order to

derive the transformation matrix.

The UT is a powerful tool used to transform a continuous prob-

ability density function (PDF) into a discrete version of itself, i.e.

a probability probability mass function (PMF), while preserving the

moments of the distribution. The UT is a fairly recent tool first pre-

sented in [31] for improving Kalman filters in nonlinear scenarios,

and since then it has been applied in a variety of fields withing elec-

trical engineering with very promising results [32, 33, 34, 35].

The remainder of this work is divided into five sections. In Sec-

tion 2 the data model is presented. Section 3 presents the funda-

mentals of array interpolation. Section 4 describes the proposed in-

terpolation method, whereas results from numerical simulations are

shown in Section 5. Finally, in Section 6 conclusions are drawn.



2. DATA MODEL

We consider a set of d wavefronts impinging onto an antenna array

composed of M antenna elements. The received baseband signal

can be expressed in matrix form as

X = AS+N ∈ C
M×N

, (1)

where S ∈ C
d×N is the matrix containing the N symbols transmit-

ted by each of the d sources, N ∈ C
M×N is the noise matrix with

its entries drawn from CN (0, σ2
n), and

A = [a(θ1),a(θ2), ...,a(θd)] ∈ C
M×d

, (2)

where θi is the direction of arrival of the i−th signal and a(θi) ∈
C

M×1 is the array response.

The received signal covariance matrix RXX ∈ C
M×M is given

by

RXX = E{XX
H} = ARSSA

H +RNN ∈ C
M×M

, (3)

where (�)H denotes the conjugate transposition, and

RSS =
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(4)

where σ2
i is the power of the i−th signal and γa,b ∈ C, |γa,b| ≤ 1

is the cross correlation coefficient between signals a and b. RNN ∈
C

M×M is a diagonal matrix with σ2
n filling its diagonal. An estimate

of the received signal covariance matrix can be obtained by

R̂XX =
XXH

N
∈ C

M×M
. (5)

3. CLASSICAL ARRAY INTERPOLATION

The array interpolation technique consists of finding a transforma-

tion matrix B that transforms the real array response AS for a given

countable and discrete set of angles S, called a sector, into the de-

sired array response ĀS . Thus, the matrix B can be seen as the

matrix that achieves the best transform between a set of vectors AS

and ĀS . The simplest solution for obtaining B is a least squares fit

via

B = ĀSA
†
S ∈ C

M×M
, (6)

where (�)† stands for the Moore–Penrose pseudo-inverse. The trans-

formation matrix B, however, is usually not capable of transforming

the response perfectly across the entire sector S except for the case

where a large number of antenna elements is present or a very small

sector is used. The error of the transform is defined as

ǫ(S) =
∥

∥ĀS −BAS

∥

∥

F
∥

∥ĀS

∥

∥

F

∈ R
+
. (7)

Large transformation errors often result in a large bias on the final

DOA estimations, thus, usually, the response region is divided into a

set of regions called sectors, and a different transform matrix is set

up for each sector (sector-by-sector processing).

4. UNSCENTED TRANSFORMATION (UT) ARRAY

INTERPOLATION

In this section the proposed method for array interpolation utilizing

the UT is described in detail. Subsection 4.1 overviews the UT. Sub-

section 4.2 presents the application of the UT to the discretization

of sectors for the calculation of the transformation matrix. In Sub-

section 4.3 the calculation of the transformation matrix using the UT

is described. In Subsection 4.4 the data transformation is presented.

Finally, in Subsection 4.5 the DOA estimation is shown.

4.1. Unscented Transformation (UT)

Although originally proposed for estimating the results of a non-

linear mapping of a probability distribution function, the UT has a

very large number of applications and can be employed to reduce the

problem of dealing with continuous PDF to dealing with a, usually

much simpler, PMF.

The UT transforms a PDF into a PMF while retaining its statistical

properties, i.e, its moments are preserved. The k-th pure moment of

a random variable r̃ can be written as

E{rk} =

∫

R

r
k
pr̃(r)dr =

J
∑

j=1

wjSj ,∈ R (8)

where pr̃(r) is the probability that r̃ assumes the value r, wj is the so

called weight of the i-th sigma point Sj . The UT is a representation

of a PDF into a PFM defined by the sigma points Sj and its weights

wj . Calculating the sigma points and its weights can be done if one

has prior knowledge of the moments of the original PDF as

k−1
∑

j=1

wjS
k−1
j = w1S

k−1
1 + ...+ wk−1S

k−1
k−1 = E{rk}. (9)

Equation (9) shows that, in order to preserve the characteristics of

r̃ up to the k-th moment, it is necessary to calculate k − 1 sigma

points and its weights by solving a nonlinear system of equations.

Thus, there is a trade-off between simplicity in the calculation and

the accuracy of the representation of higher order moments of the

original PMF.

4.2. Sector Discretization

Classic interpolation relies on transforming an array response over a

discrete set of angles S. The choice of points that belong to S is usu-

ally an arbitrary one, based solely on the predefined sector bounds

and the chosen angular resolution. We propose selecting the angles

that belong to S by applying the UT.

Similar to [29], the first step is to look at the power received over

the field of view of the array. For this step the conventional beam-

former [36] can be applied, obtaining

L(θ|X) =
wH(θ)R̂XXw(θ)

wH(θ)w(θ)tr(R̂XX)
∈ R (10)

where R̂XX = XX
H

N
is the estimate of the signal covariance matrix,

w(θ) = a(θi) for i = 1, . . . , d and tr(·) is the trace operation.

Normalizing (10) we obtain the estimate of the likelihood L(θ|X),
which represents the probability that a signal is arriving from the

DOA θ.
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Fig. 1: L(θ|X) for two sources

Figure 1 presents an example of the output of (14). The output of

(10) is scanned for sectors, and for each sector the respective lower

bound lk and upper bound uk are defined as shown in Figure 1. The

probability floor p(ασ2
n) defines whether a region is considered as

a sector for the interpolation or not, and varies with the noise floor.

The standard procedure for array interpolation would be to create a

discrete set of angles within that range and employ a least squares

fit. Instead of that, this work proposes the application of the UT in

the likelihood within that range.

To simplify the process, the likelihood over the entire field of view

must be truncated to within the detected sectors. To do that the prob-

ability left outside the sectors is distributed uniformly within the sec-

tor. This is reasonable, considering that the probability outside the

sector only appears due to the presence of noise and due to harmonic

terms adding up constructively in the beamformer equation. For the

sake of simplicity, and since modeling spatial correlation between

received signals can be extremely complex, we treat each sector as

an independent likelihood. Any probability below the floor is con-

sidered to be null and the truncated total is divided within the non

truncated area as

uk
∫

lk

L(θ|X)dθ = 1. (11)

The truncated continuous likelihood can be transformed into a dis-

crete likelihood while still preserving its statistical properties by ap-

plying the UT.

Now we can apply the UT to the likelihoods defined in (11). The

number of points chosen to transform each sector is a function of the

number of antennas. We can define the total number of UT points

|SUT| as

|SUT| = M ∈ N. (12)

This is done so that (6) is a determined system. Thus, we have

that the result from (7) is zero, that is, there are enough degrees of

freedom to achieve the desired transformation over the set of angles

SUT = [S1, S2, . . . , SM ] defined by the application of the UT.

Figure 2 presents how the likelihood shown in Figure 1 can be

discretized in the case that M = 6. Thus, we can construct a total

transformation sector by concatenating the all the sigma points found

by the UT for the detected sectors. We have that

ASUT = [a(S1),a(S2), ...,a(SM )] ∈ C
M×M

. (13)

4.3. Transformation Matrix Calculation

A transformation that takes into account the weights found by the

UT for the sigma points can be found by extending (6), resulting in
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Fig. 2: UT of L(θ|X) for two sources

BUT = ĀSUT

√

diag{[w1, w2, ..., wM ]}AH
SUT

(

ASUT

√

diag{[w1, w2, ..., wM ]}AH
SUT

)−1

∈ C
M×M

.

(14)

Following the proposed approach the transformation error shown in

(7) is zero. However, the proposed approach requires the calcula-

tion of multiple sigma points through solving nonlinear systems of

equations, and, for setting up such systems, it is necessary to ob-

tain the moments of the likelihoods shown in Figure 1. In order to

simplify the application and allow the proposed method to be used

in real time array interpolation for systems with limited processing

power, we propose calculating sigma points for common sector like-

lihoods, that is, defining a set of sigma points for common expected

beamformer waveforms that a real time system may use.

The transformation matrix calculation can be seen as the trans-

formation of the weighted cross covariance between the real and

desired array responses into the covariance of the desired array re-

sponse. However, the desired array response covariance is corrupted

by the noise present in the measurements. The noise present after

transformation is colored by the transformation it self, therefore, the

calculation of B will depend on B itself. To solve this problem a

iterative approach can be used,

B
(p)

= ĀSUT

√
diag{[w1,w2,...,wM ]}AH

SUT
((

ASUT

√
diag{[w1,w2,...,wM ]}AH

SUT

)

+B
(p−1)

RNNB
(p−1)H

)

−1

∈ C
M×M

, (15)

where B(0) can be initialized using a diagonal RNN with σ2
n filling

its diagonal. After that a new iteration of B(p) is obtained using the

previous value until convergence.

4.4. Data Transformation

Once B has been obtained, the transformed covariance including

FBA and SPS is obtained by [19]

R̄XX(L) =
1

2L

L
∑

l=1

J
T
l (BR̂XXB

H +QBR̂
∗
XXB

H
Q)Jl, (16)

where (·)∗ stands for the complex conjugation, L is the smoothing

length chosen, Q is a matrix containing ones in its anti-diagonal and

zeros elsewhere, and Jl is an appropriate selection matrix. After the



transformation the ESPRIT algorithm can be applied as described in

[29].

While L can be chosen a priori it can also be adaptively chosen

as to minimized the loss of effective array aperture while achieving

a good estimate of d. We use as a model order estimation method

MOE(R̄XX(L)) = d̂. Therefore we have to solve the problem

(L, d̂) = argmin
L

max
d̂

{

MOE(R̄XX(L))
}

(17)

4.5. GEVD and ESPRIT

After solving the problem in (17) a joint high resolution estimate of

the DOAs can be obtained, as shown in [37], by applying the GEVD

on the FBA-SPS covariance matrix R̄XX.

R̄XXE = R̄NNEΛ, (18)

where E ∈ C
M×M is a matrix containing the generalized eigenvec-

tors and Λ ∈ R
M×M is a matrix containing the generalized eigen-

values in its diagonal. By selecting the eigenvectors related to the

d̂ largest eigenvalues the so called signal subspace Es ∈ C
M×d̂ is

constructed. This signal subspace needs to be dewhitened or pro-

jected back onto the original response subspace prior to estimation,

this can be done by
Ēs = R̄NNEs. (19)

With this subspace estimate at hand the Total Least Squares (TLS)

ESPRIT [26] is applied.

5. NUMERICAL RESULT

The array response assumed in the simulations shown in Figures 4

and 5 is constructed by randomly displacing the elements of a Uni-

form Linear Array (ULA). The array has inner element spacing of

b = λ
2

and the elements are displaced to a point belonging to a circle

with center on the original antenna position and radius a = 0.1λ
2

,

where λ is the wavelength of the carrier frequency of the signal, as

shown in Figure 3 . For obtaining R̂XX we use N = 100 snap-

shots and the Root Mean Squared Error (RMSE) is calculated with

respect to 1000 Monte Carlo simulations. Two signals impinging

from θ1 = 45◦ and θ2 = 15◦ with σ2
1 = σ2

2 = 1 and γ1,2 = 1
according to equation (4) are impinging on the array. The Signal to

Noise Ratio (SNR) is defined as SNR =
σ2
1

σ2
n
=

σ2
2

σ2
n

. In Figures 4 and

5 the given RMSE is

RMSE =

√

√

√

√

1

K

K
∑

k=1

(

(θ̂1,k − θ1)2 + (θ̂2,k − θ2)2
)

, (20)

where θ̂i,k is the estimate of θi at the k-th Monte Carlo run.

Fig. 3: Simulation array setup

Figure 4 compares the results obtained with the proposed UT ap-

proach and with the approach presented in [29] for an array length

M = 6. SPS and FBA are applied in an adaptive manner to decorre-

late the received signals. The approach adopted in [29] is capable of
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Fig. 4: Performance comparison between standard discretization

and UT discretization for M = 6

improved accuracy as the SNR increases. However, there is a change

in the inclination of the curve at SNR = 30 dB, since the influence

of the transformation error becomes greater than the influence of the

noise in the final DOA estimation bias. However, since the trans-

formation obtained with the UT is exact, there is no transformation

error, and the transformation is exact for the selected points.
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Fig. 5: Performance comparison between standard discretization

and UT discretization for M = 12

Figure 5 compares the same approaches but for an array of length

M = 12. The larger array results in a better RMSE for both tech-

niques, and, since the extra number of antennas result in more de-

grees of freedom for the transformation, and, thus, a smaller trans-

formation error when the standard discretization is used. Therefore,

the compared techniques only begin to differ heavily in accuracy at

higher SNR, where the transformation bias, albeit smaller, still re-

sults in a DOA estimation bias.

6. CONCLUSION

In this work a novel approach for array interpolation exploring the

UT has been presented. In the traditional array interpolation ap-

proaches present in the literature the transformed sectors are ob-

tained by uniformly discretazing the sector within its boundaries.

This work proposed using the UT to obtain the discrete angles that

better describe the signal received at the antenna array. Using the

UT allows the same sectors to be described with a chosen number

of angles, allowing the calculation of the transformation to be exact,

reducing the bias introduced by an imperfect transformation. After

transformation SPS, FBA and ESPRIT can be applied to the data.1
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