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Abstract—By taking into account several dimen-
sion of the transmitted signal, such as space, fre-
quency, period and time, MIMO-OFDM systems al-
low an increased spectral efficiency and an improved
identifiability in comparison to matrix solutions. In
this paper, we evaluate MIMO-OFDM systems for
geometric scenarios where the narrow band approx-
imation is violated. To this end a new data model
is proposed to better represent the behavior of the
system in the presence of wide band signals. More-
over, we also relax the assumption that the amount
of transmitted antennas is equal to the number of
transmitted symbols.

I. INTRODUCTION

At the end of 2011, the amount of subscribers
connected to mobile networks was close to 6
billions with an increasing rate of 0.6 billions
per year. Moreover, high data rate applications
are becoming more frequent. In order to fit such
increasing demand, communication schemes that
takes into account Multiple Input Multiple Output
(MIMO) and Orthogonal Frequency Division Mul-
tiplexing (OFDM) solution at the same time can
be applied [1]–[4].

Recently a new space-time-frequency diver-
sity based MIMO-OFDM system has been pro-
posed [4] where transmit signal design combines

frequency-domain Vandermonde spreading with a
time-varying linear constellation pre-coding, while
the received signal is formulated as a nested paral-
lel factor (PARAFAC) model. Also, two extensions
for this scheme were shown in [5].

In this paper we evaluate the performance
of the MIMO-OFDM receivers proposed in [4]
for geometric scenarios, i.e, simulation scenarios
generated using ray tracing techniques instead of
stochastic characteristics. These channels are gen-
erated using the Ilmprop software [7]. We formu-
late a mathematical representation for such scenar-
ios and show, by means of simulations, that the
narrow bands approximation is violated. The per-
formance of two decomposition algorithms in both
geometric and probabilistic channel is verified.

In [4], the amount of transmitted antennas is
equal to the number of transmitted symbols. By
employing the tensor representation, which offers
greater identifiability, instead of the matrix repre-
sentation we are able to relax this constraint to
obtain increased data rates.

This remainder of this paper is organized as
follows. In Section II, a data model is formulated as
a nested PARAFAC model. This model is exploited
for blind symbol decoding and channel estimation
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as the channel model presented in Section II-C. In
Section III, we show the proposed Least Squares
Khatri-Rao Factorization (LS-KRF) receiver [4].
Numerical results are presented in Section IV.
Finally, a conclusion is drawn in Section V.

Notation: Scalars are denoted by lower-case
letters (a, b, · · · ), vectors are written as boldface
lower-case letters (a, b, · · · ), matrices as boldface
capitals (A,B, · · · ), and tensors as boldface calli-
graphic letters A,B, · · · ). The superscripts T,H ,†,
and ∗ represent transpose, Hermitian transpose,
pseudo-inverse and complex conjugate of a matrix,
respectively. The A(:, i) ∈ C

R×1 is a column
vector denoting the i-th column of A ∈ C

I×R. The
operator diag(a) forms a diagonal matrix based on
a, and vec(A) yields an RI-dimensional vector
that stacks the R columns of A ∈ C

I×R on top
of each other. The operator vecdiag(D) forms a
vector d ∈ C

R×1 from the diagonal elements of
matrix D ∈ C

R×R, while Di(A) is a diagonal
matrix constructed from the i-th row of A. The
TTT (r) is the r-mode matrix unfolding of TTT .

Moreover, the Kronecker product and outer
product operators are denoted by ⊗ and ◦, respec-
tively. The Khatri-Rao product between two matri-
ces A ∈ C

I×R and B = [b1, · · · , bR] ∈ C
J×R,

denoted by �, is their column-wise Kronecker
product

A � B =̇ [A(:, 1)⊗B(:, 1), · · · ,A(:, R)⊗B(:, R)]. (1)

In this paper, the following property of the Khatri-
Rao product is used

Adiag(xT)BT =
(
xT �A

)
BT, (2)

where x is an R-dimensional column vector.

II. SYSTEM MODEL

A. Transmitted Data

Consider a MIMO-OFDM wireless commu-
nication system employing Q transmit antennas
and K receive antennas. In the frequency domain,
information transmission is partitioned into groups
of F neighboring sub-carriers and space-frequency
coding is applied across these F sub-carriers. The
transmission time-frame is composed of a collec-
tion of N short time-slots of P symbol periods
each.

The information symbol stream is first parsed
into symbol vectors sn ∈ C

M×1. Each symbol vec-
tor is linearly pre-coded across P symbol periods
by means of a set of unitary Q ×M space-time
modulation matrices {G1, · · · ,GP }. During the p-
th symbol period, Gp rotates the components of the
symbol vector sn and loads a combination of these
components into the Q transmit antennas. The pre-
coded symbol vector is then used to modulate
the F sub-carriers through a linear block-coding
matrix W ∈ C

F×Q. Along the same lines of [3],
we choose W as a Vandermonde matrix with the
(f, q) entry given by

[W ]f,q = ej(f−1)(q−1) 2π
Q . (3)

Therefore, the space-frequency transmitted matrix
at the p-th period and n-th time slot is given by

Cn,p = diag(Gpsn)W
T ∈ C

Q×F , (4)

where Gp has the following form

Gp = Θdiag(ap) ∈ C
Q×M , (5)

which Θ ∈ C
Q×M being a discrete

Fourier transform (DFT) matrix, and
ap = [1, ejφ, · · · , ej(M−1)φ] ∈ C

1×M is a
phase rotation vector, with φ being an elementary
rotation that is randomly varied at the transmitter
and can be optimized for a given Q and modulation
type.

According to (3), Gp is responsible for com-
bining the symbols through different antennas
while W is responsible for combining the symbols
through different frequencies, resulting in space-
frequency coding. Note that in [4] the number of
transmitted symbols M is equal to the number of
antennas Q.

B. Proposed Data Model

Assuming that the channel is constant over
the whole time-frame, the discrete-time baseband
equivalent model for the received signal is given
by

Y n,p =

√
ρ

Q
HCn,p + V n,p

=

√
ρ

Q
Hdiag(Gpsn)W

T + V n,p, (6)
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Fig. 1. MIMO-OFDM Transmitter

where Y n,p ∈ C
K×F , for n = 1, · · · ,N, and p =

1, · · · ,P, denotes the complex received signal ma-
trix during the p-th symbol period of the n-th
time-slot, and V n,p denotes zero-mean circularly
symmetric complex Gaussian (ZMCSCG) noise.
The channel matrix H represents the channel gain
for each transmitter-receiver antenna pair and ρ
denotes the signal-to-noise ratio (SNR) at each
receive antenna.

By concatenating all ap vectors into a matrix
A and all sn vectors into a matrix S, (6) can be
represented as

Y n,p =

√
ρ

Q
HDp(ADn(S)Θ

T)W T + V n,p.

(7)

By concatenating all P periods and all N time
slots, we obtain the following matrix

Y =

√
ρ

Q

[(
(S �A)ΘT

)
�H

]
W T + V . (8)

The signal part corresponds to the nested
PARAFAC decomposition: the underlined part is
the inner PARAFAC while the whole signal is the
outer PARAFAC.

As presented in [4], the received signal can also
be represented in tensor form with the inner part

being represented as

T = IM ×1 S ×2 A×3 Θ ∈ C
N×P×Q, (9)

where IM represents the identity tensor of size
M ×M ×M and ×r for r = 1, · · · , R, is the r-
mode product operator. Note that the 3rd dimension
has size Q, differently from [4], where the number
of transmitted symbols M was equal to the number
of antennas Q.

Likewise (9), Equation (8) can be rewritten in
tensor form as

Y =

√
ρ

Q
·IM×1H×2W×3T+V ∈ C

K×F×NP ,

(10)
where T = [T (3)]

T and V is the noise tensor.

The receiving process is summarized in Fig.2.

Fig. 2. MIMO-OFDM Receiver

C. Proposed Geometric Channel

In order to evaluate the performance of the
MIMO-OFDM system for more realistic scenarios,
we apply the schemes presented on [4] to a specific
geometric scenario corresponding to Figure 3. This
scenario presents a line of sight (LOS) component
depicted by a thick red line and two non-line-of-
sight (NLOS) components depicted by thin black
lines. The transmitter is equipped with a ULA
composed of 3 antennas and the receiver with a
ULA composed of 2 antennas.
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Since, for wide-band transmissions, different
frequency taps usually present different channel
responses, we generalize (6) in order to get a more
realistic model.

Y n,p =

√
ρ

Q
[H1Cn,p,1| . . . |HFCn,p,F ]+V n,p,

(11)
where the operator | stands for concatenation,
Hf ∈ C

K×Q is the channel for the f -th frequency
component and Cn,p,f is the f -th column of the
matrix Cn,p.

Fig. 3. Ilmprop scenario from above perspective with horizon-
tal axes in meters

III. LEAST SQUARES KHATRI-RAO

FACTORIZATION (LS-KRF) BASED

MIMO-OFDM RECEIVER

A. LS-KRF

Now we review the closed form LS-KRF based
receiver [4] for semi-blind joint detection and chan-
nel estimation. First we estimate T and H via the
outer PARAFAC model. The 2-mode unfolding of
tensor Y gives

[Y ]2 = W · [(T �H)]T. (12)

After multiplying both sides in (12) by the pseudo-
inverse of W and then taking the transpose, we get

(T �H) = (W † · [Y ]2)
T ∈ C

NPK×M . (13)

The unvectorization of the m-th column of (T �H),
m = 1, · · · ,M , yields a matrix Qm ∈ C

NP×K .
According to (1), in the presence of noise, Qm is
a rank-one matrix

Qm = H(:,m) ◦ T 0(:,m). (14)

Hence we can apply SVD to Qm to obtain the
estimate H(:,m) ∈ C

NP×1 and T (:,m) ∈ C
K×1.

Suppose after SVD, we have

Qm = Um · Σm · V H
m, (15)

then the estimates of H(:,m) and T (:,m) are
given by

T̂ (:,m) =
√
σ1mUm(:, 1) ∈ C

NP×1 (16)

and

Ĥ(:,m) =
√
σ1mV ∗

m(:, 1) ∈ C
K×1. (17)

Similar with the ALS solution, the scaling
ambiguity from T̂ can be removed by knowing that
the first row in T is known.

IV. SIMULATION RESULTS

In this section we analyze the performance of
the proposed system for two different types of
scenarios. A “close to typical rank” scenario is a
scenario where the number of transmitted symbols
M is large. The performance of the proposed
system is also studied for geometric scenarios.

A. Close to typical rank scenarios

In Figs. 4 and 5, we consider a MIMO-OFDM
system with K = 4 receive antennas, Q = 4
transmit antennas, F = 8 frequency bins, N = 10
time slots, and P = 2 periods. In both figures, we
observe the performance of the ALS and LS-KRF
by varying the SNR and M . For such configuration,
note that the Kruskal’s condition for the outer
PARAFAC is satisfied [4]. However, note that if
M > Q, the Kruskal’s condition for the inner
PARAFAC is not satisfied.

In Fig.4, the ALS completely fails when M >
4, since the Kruskal’s condition is not satisfied.
However, for M ≤ 4, the BER is zero for an SNR
> 5.

In contrast to the ALS, the LS-KRF works
partially even when M > 4 as shown in Fig.5.
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Fig. 4. Bit Error Rate vs SNR for the ALS with M =
2, 3, ..., 8.

For M > 4, the BER varies from 4 · 10−2 until
2 · 10−1. In Tab.1 we show the values of the
BER versus M at SNR = 30 dB. The M(N − 1)
column gives the number of transmitted sybols and
M(N−1)(1−BER) gives the number of correctly
received symbols. Even though the BER increases
for great values of M , the amount of transmitted
symbols also increases with the increase of M ,
verifying the advantage of using of the proposed
model.

Fig. 5. Bit Error Rate vs SNR for the LS-KFR with M =
2, 3, ..., 8.

TABLE I. EFFICIENCY FOR SNR = 30 dB, SECOND

COLUMN: TRANSMITTED SYMBOLS. FOURTH COLUMN:
CORRECTLY RECEIVED SYMBOLS

.

M M(N−1) BER M(N−1)(1−BER)
2 18 0 18

3 27 0 27

4 36 0 36

5 45 0,1 40,5

6 54 0,125 47,25

7 63 0,2 50,4

8 72 0,2 57,6

B. Geometric Channel

In this section we analyze geometric scenarios
using our proposed expression (11). The MIMO-
OFDM system has K = 2 receive antennas, Q = 3
transmit antennas, F = 100 sub-carriers, P = 3
periods, and N = 5 time slots. In Fig.6, we divide
a 40 MHz bandwidth into 800 sub-carriers and
then select F = 100 sub-carriers for our MIMO-
OFDM system. We select the number of symbols
M = 4, i.e., a number immediately larger then
the Kruskal’s condition limit. Is this scenario, the
better performance of the LS-KRF is clear as from
-10dB.
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Fig. 6. Bit Error Rate vs SNR - 800 sub-carriers.

In Fig.7, we divide the 40 MHz bandwidth
into 200 sub-carriers and we select the same quan-
tity F = 100 sub-carriers for our MIMO-OFDM
system. This means that we are increasing the
bandwidth of each sub-carry, i.e., the narrow band
approximation is violated and the performance
is severely degraded. However, the LS-KRF still
works partially for high SNR cases.
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Fig. 7. Bit Error Rate vs SNR - 200 sub-carriers.

V. CONCLUSIONS

In this paper a new data model for Space-Time-
Frequency coded MIMO-OFDM systems was pro-
posed. The proposed data model is also capable
of eliminating the limitation of symmetric number
of antennas being present at the transmitter and re-
ceiver. Due to this generalization, an increase in the
data rate of the MIMO-OFDM technique is shown
to be achievable. When the Kruskal’s condition
is violated the LS-KRF is still operational. Even
with an increase in the BER, the increased number
of transmitted symbols increases the amount of
correctly received symbols. Also, the proposed data
model is adequate for wide band scenarios.

As a future work, a scheme in which the Space-
Time-Frequency coded MIMO-OFDM algorithms
is adapted to wide band scenarios seems natural.
However this task is not trivial. Once the channel
is split into various linear channels the problem
becomes bidimensional and the tensor algebra can
no longer be applied. Using blind source separation
schemes could be a way of recovering the data if
the DFT and rotation matrix are carefully chosen so
that the data distribution does not become gaussian.
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