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Abstract

Important signal processing techniques need that the response of the different elements of a sensor array has specific
characteristics. For physical systems this often is not achievable as the array elements’ responses are affected by mutual
coupling or other effects. In such cases, it is necessary to apply array interpolation to allow the application of ESPRIT,
Forward Backward Averaging (FBA), and Spatial Smoothing (SPS). Array interpolation provides a model or transforma-
tion between the true and a desired array response. If the true response of the array becomes more distorted with respect
to the desired one or the considered region of the field of view of the array increases, nonlinear approaches becomes
necessary. This work presents two novel methods for sector discretization. An Unscented Transform (UT) based method
and a principal component analysis (PCA) based method are discussed. Additionally, two novel nonlinear interpolation
methods are developed based on the nonlinear regression schemes Multivariate Adaptive Regression Splines (MARS) and
Generalized Regression Neural Networks (GRNNs). These schemes are extended and applied to the array interpolation
problem. The performance of the proposed methods is examined using simulated and measured array responses of a
physical system used for research on mutual coupling in antenna arrays.
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1. Introduction

Sensor arrays have been applied in various fields of
modern electrical engineering. From up and coming appli-
cations such as massive Multiple Input Multiple Output
(MIMO) [1] to microphone arrays capable, for instance, of
detecting and separating multiple sound sources or playing
individual songs depending on the seat of a car [2]. The
mathematical tools provided by array signal processing to-
gether with the evolution of electronic circuitry have made
such applications a reality. The problem of parameter es-
timation is of major interest in the field of array signal
processing. Among the parameters that can be estimated,
the direction of arrival (DOA) of an electromagnetic wave
received at the array has experienced significant attention.
Knowledge of the DOA is important for e.g. spatial filter-
ing or source tracking.

Among the available methods for multiple DOA esti-
mation, some of them stand out due to their computational
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efficiency, such as the Iterative Quadratic Maximum Likeli-
hood (IQML) [3], Root Weighted Subspace Fitting (Root-
WSF) [4], Root-MUSIC [5], and ESPRIT [6]. These meth-
ods, however, demand very specific and precise responses
from the antenna array, i.e. Vandermonde or left centro-
hermitian responses. Another important use of arrays
with such responses is that they provide the mathemat-
ical model necessary for the application of important tools
such as Spatial Smoothing (SPS) [7] and Forward Back-
ward Averaging (FBA) [8]. Model order selection methods
[9, 10, 11, 12], used to estimate the number of received
signals, have their performance highly impacted by the
presence of correlated signals, making SPS and FBA nec-
essary under such conditions. Methods such as Maximum
Likelihood (ML) [13, 14] or its iterative implementations
such as the Expectation Maximization (EM) [15, 16, 17]
and the Space Alternating Generalized Expectation Maxi-
mization (SAGE) [18, 19, 20] do not require a specific array
geometry, however, need precise knowledge of the model
order. Furthermore, these methods are more computation-
ally expensive and, in the case of EM and SAGE, can have
convergence problems in the presence of local maxima.

Arrays that have a Vandermonde or a left centro-hermi-
tian response are very hard to achieve in real sensor ar-
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ray implementations. Mutual coupling of the antennas,
changes in antenna location, material tolerances, hardware
biases, and the surrounding environment of the array all
affect the response of individual antennas and, thus, of the
antenna array. To deal with such imperfections, a map-
ping between the true and desired virtual array response
can be created, and the received data can then be inter-
polated into this virtual array.

Creating a precise model for the entire field of view of
the array is difficult, especially when applying linear in-
terpolation to arrays with a limited number of antennas
[21]. Therefore, array interpolation schemes rely on di-
viding the field of view of the array into smaller angular
regions, called sectors [22]. In previous array interpola-
tion works the so-called sector-by-sector processing is per-
formed. The array is divided into multiple regions to be
interpolated and these regions are discretized using a dense
uniform grid. For each of these regions, a separate DOA es-
timation is performed. That is, interpolation is performed
over a limited region of the field view of the array to keep
the bias introduced by the interpolation limited. Larger
transformation regions, in general, will result in less accu-
rate interpolations. However, sector-by-sector processing
introduces a number of problems e.g. separation of DOA
estimates from different sectors, etc.

Array interpolation can be achieved in either a linear or
nonlinear fashion. In case the true response strongly dif-
fers from the desired virtual response or the number of an-
tennas is small, a nonlinear interpolation method becomes
necessary. Under such demanding conditions, nonlinear
array interpolation is capable of achieving a lower DOA
estimation bias than compared to its linear counterpart.

In this work, a method for signal adaptive sector selec-
tion is presented and two different alternatives for sector
discretization are developed. First, a novel method for sec-
tor discretization is derived from the Unscented Transform
(UT) [23]. This mathematical transformation, mostly used
in the context of Kalman filters, is extended to the problem
of array interpolation to discretize the detected sectors.
The statistical equivalence of the region transformed by
the UT when compared to the true array input is proven.
A second method extends the concept of principal compo-
nent analysis (PCA), a tool commonly used in the context
of regression in statistics, to the problem of discretizing the
detected sectors in order to minimize problems with cor-
relation in predictors and reduce the computational load
necessary to build the interpolation methods.

Furthermore, also two novel methods for nonlinear in-
terpolation based on nonlinear regression are developed.
First, a method is derived from Multivariate Adaptive Re-
gression Splines (MARS) [24], a nonlinear and nonpara-
metric regression method. We are extending MARS to
the problem of array interpolation by introducing an aug-
mented formulation of the mapping and by deriving a per-
tinent generalized cross-validation to reduce the usually
over-fitted models. This approach is suitable for arrays
with responses that strongly differ from the desired re-

sponse and that have a small number of antennas. A sec-
ond nonlinear interpolation approach extending the con-
cepts of General Regression Neural Networks (GRNNs)
[25] into the context of array interpolation is developed
by using an augmented formulation of the mapping. The
GRNN based method is able to model nonlinear relation-
ships between the true and desired array responses at a
lower computational cost compared to the MARS approach.

The efficiency and performance of the proposed ap-
proaches are tested by means of numerical simulations us-
ing measured responses of a real physical system, a linear
array with a variable inter-element spacing for research on
mutual coupling in antenna arrays. The performance of
the proposed methods is also studied in case a simulated
(ANSYS HFSS) response is used to build the interpolation
models instead of the true measured data.

The remainder of this work is divided into seven sec-
tions. In Section 2 an overview of previous works on the
topic of array interpolation and how they are related to
the methods proposed in this work is presented. Section
3 details the data model used in this work. The concept
of array interpolation as considered in this work and im-
portant related concepts are shown in Section 4. Section 5
addresses the methods for sector selection and discretiza-
tion proposed in this work. The proposed nonlinear inter-
polation methods are presented in Section 6. Results from
numerical simulations are shown in Section 7. Finally, in
Section 8 conclusions are drawn.

2. Related Works

Bronez [26] first presented a solution for mapping true
imperfect array responses into precise and desired respon-
ses, and he has called such mapping array interpolation.
The presented schemes rely on dividing the field of view
of the array response into smaller angular regions, called
sectors. For each of these sectors, a transformation matrix
is calculated using the empirical knowledge of the true
array response. This is called sector-by-sector array inter-
polation, the larger the region transformed the larger will
be the bias introduced due to transformation imprecision.
Friedlander and Weiss [27] extended sector-by-sector array
interpolation to include FBA, SPS, and DOA estimation
algorithms such as Root-MUSIC [22]. Bühren et al. [21]
presented a design metric for the virtual array seeking to
preserve the directional characteristics of the true array.
Bühren et al. [28] and Weiss and Gavish [29] presented
methods for array interpolation that allow the application
of ESPRIT for DOA estimation. All of these interpolation
methods are performed on by sector-by-sector basis, di-
viding the entire field of view of the array and performing
multiple DOA estimations, one for each sector.

When performing array interpolation for a sector there
is no guarantee with respect to what happens with sig-
nals received from outside the angular region for which the
transformation matrix was calculated (out-of-sector sig-
nals). If the out-of-sector signal is correlated with any pos-
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sible in-sector signal, a large bias in the DOA estimation
is introduced. Pesavento et al. [30] proposed a method
for filtering out of sector signals using cone programming.
A similar approach was used by Lau et al. [31, 32] where
correlated out-of-sector signals were addressed by filtering
out the out-of-sector signals.

More recently, array interpolation has been applied to
more specific scenarios. Liu et at. [33] extended the con-
cept of linear array interpolation to coprime arrays allow-
ing for better identifiability of received signals. Hosseini
and Sebt [34] applied the concept of linear array interpola-
tion to sparse arrays by selecting virtual arrays as small as
possible while retaining the aperture of the original sparse
array.

This work proposes an adaptive single sector selec-
tion method aiming to circumvent the problem of out-
of-sector signals by interpolating all regions of the array
where power is received using a single transformation. The
authors [35] studied an alternative for applying ESPRIT
with FBA and SPS, relying on a signal adaptive sector
construction and discretization and extended the method
to the multidimensional case [36]. The proposed method
prevents out-of-sector problems by building a single sec-
tor using a signal adaptive approach while also bound-
ing the transformation error. This, however, can lead to
large sectors and, in the case of a small number of an-
tennas, this will lead to larger transformation errors and
DOA estimation biases. The work at hand presents a novel
pre-processing step used for sector discretization based on
PCA and derives a novel concept from the UT [37].

The authors [38] proposed a novel nonlinear interpo-
lation approach using MARS. The proposed approach is
capable of interpolating arrays with a limited number of
antennas and very distorted responses while keeping the
DOA estimation bias low, heavily outperforming array
linear interpolation methods. This performance improve-
ment comes at the cost of increased computational cost.
This work extends the MARS with advanced sector dis-
cretization methods that lead to a better performance and
lower complexity. Furthermore, a more detailed mathe-
matical description of the MARS method is presented. Ex-
panding on the topic of nonlinear interpolation, the work
at hand additionally presents an novel interpolation ap-
proach based on GRNNs. The proposed method is capable
of achieving a performance similar to that of MARS in cer-
tain SNR regimes at a lower computational cost compared
to the MARS based method.

In summary, this paper extends the concepts of array
interpolation presented in previous research to explore the
concepts of statistical significant sector discretization and
nonlinear interpolation. Previous research focused on con-
cepts for sector-by-sector processing, whereas this work
aims to use a single unified sector discretized in a sta-
tistically significant manner. Moreover, this work devel-
ops novel nonlinear methods for array interpolation and
presents a method suitable for real-time implementations
capable of providing better performance than linear inter-

polation methods previously derived in the literature.
The results of the proposed discretization and inter-

polation methods are assessed via a set of studies consid-
ering measured responses obtained from a real physical
system. The results show that all the proposed methods
significantly improve DOA estimation considering a phys-
ical system and its inherent imperfections. Furthermore,
this work analyzes the performance of the proposed inter-
polation methods when measurements of the true array
response are not available and only simulated responses
for building the interpolation models are available.

3. Data Model

This work considers a set of d wavefronts impinging
onto a linear antenna array composed ofM antennas. Fig-
ure 1 shows a graphical representation of the linear ar-
ray. Considering the antenna elements are placed along
the y-axis, the array geometry can be used to estimate
the azimuth angle θ. For arrays composed of isotropic an-
tennas, the elevation angle φ would have no influence on
the antenna response, however, this work considers arrays
with imperfect responses that have varying amplitude and
phase responses of the different elements of the array with
respect to the elevation angle of the received signals.

φ

θ

x

y

z

Figure 1: Graphical representation of a linear array

The received baseband signal at the array output can
be expressed in matrix form as

X = AS + N ∈ CM×N , (1)

where S ∈ Cd×N is the matrix containing the N symbols
transmitted by each of the d sources, N ∈ CM×N is the
noise matrix with its entries drawn from CN (0, σ2

n), and

A = [a(θ1, φ1),a(θ2, φ2), ...,a(θd, φd)] ∈ CM×d, (2)

where θi and φi are the azimuth and elevation angles of
the i−th signal, and a(θi, φi) ∈ CM×1 is the antenna array
response.
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Figure 2: Example of array interpolation

The received signal covariance matrix RXX ∈ CM×M
is given by

RXX = E{XXH} = ARSSAH + RNN, (3)

where (�)H stands for the conjugate transpose, and

RSS =


σ2

1 γ1,2σ1σ2 · · · γ1,dσ1σd

γ∗1,2σ1σ2 σ2
2

...
...

. . .
γ∗1,dσ1σd γ∗2,dσ2σd · · · σ2

d

 , (4)

where σ2
i is the power of the i−th signal and γi,i′ ∈ C,

|γi,i′ | ≤ 1 is the cross-correlation coefficient between sig-
nals i and i′with i 6= i′. RNN ∈ CM×M the spatial covari-
ance matrix of the noise. In case the entries of the noise
matrix are drawn from CN (0, σ2

n), RNN = IMσ
2
n , where

IM denotes an M × M identity matrix. The Signal-to-
Noise-Ratio (SNR) is defined as

SNR =
σ2

1

σ2
n

=
σ2

2

σ2
n

= · · · = σ2
d

σ2
n

. (5)

An estimate of the received signal covariance matrix can
be obtained by

R̂XX =
XXH

N
∈ CM×M . (6)

4. Array Interpolation

Arrays can be interpolated by means of a one-to-one
mapping given by

f : AS → ĀS , (7)

where S is a sector. Figure 2 presents a graphical exam-
ple of an array of arbitrary geometry being interpolated
into a uniform linear array. Note that, even if an array
has the required geometry for the usage of a certain ar-
ray processing technique, its response may not adhere to
an underlying assumed mathematical model. Therefore,
in such cases, geometrically well behaved arrays may need
to be interpolated to allow the application of the desired
technique.

Definition 1. A sector S is a finite and countable set of
2-tuples (pairs) of angles (θ, φ) containing all the combina-
tions of azimuth and elevation angles representing a region
of the field of view of the array. The sector S defines the
column space of AS and ĀS .

AS ∈ CM×|S| is the array response matrix formed out
of the array response vectors a(θ, φ) ∈ CM×1 of the an-
gles given by the elements of S. AS contains the true
array response of the physical system, which may not pos-
sess important properties such as being centro-hermitian
or Vandermonde. ĀS ∈ CM ′×|S| is the interpolated ver-
sion of AS with columns ā(θ, φ) ∈ CM ′×1 being the array
response of the so-called virtual or desired array, having
all the properties necessary for posterior processing. |S| is
the cardinality of the set S, i.e. the number of elements in
the set.

Definition 2. The mapping f is said to be array size
preserving if M = M ′.

Definition 3. The mapping f is said to be geometry pre-
serving if it is size preserving and if the underlying array
geometry for the true and virtual array is equivalent.

This work limits itself to mappings of linear planar ar-
rays that are size and geometry preserving, as given in
Definitions 2 and 3, respectively.

Linear array interpolation is usually done using a least
squares approach. The problem is set up as finding a trans-
formation matrix B that is given by

BAS = ĀS , (8)

The snapshot matrix X can be transformed by multiplying
it from the left-hand side with the transform matrix B,
which is equivalent to applying a linear model for each of
the outputs of the virtual antenna array. Therefore, in
linear array interpolation f is given by the transformation
matrix B.

This model is usually not capable of transforming the
response perfectly across the entire field of view except
for the case where a large number of antenna elements
is present or a very small sector is used. Large trans-
formation errors often result in a large bias on the final
DOA estimation, thus, usually, the response region is di-
vided into a set of regions called sectors, and a different
transform matrix is set up for each sector (sector-by-sector
processing).

Nonlinear interpolation is an alternative to the linear
approach capable of providing better accuracy under more
challenging scenarios at the cost of increased complexity.
In nonlinear interpolation, the mapping f is given by a
nonlinear function, such that

f(v + βq) 6= f(v) + βf(q) (9)

for some v, q and β.
Whatever array interpolation method is used, linear

or nonlinear, the array response can only be interpolated
after sector detection/selection and sector discretization.
The following section presents a discussion on detection
and selection of sectors of the field of view of the antenna
array and how to discretize the detected sectors. Section
6 discusses nonlinear array interpolation methods in order
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to perform a one-to-one mapping between the true and the
virtual array response considering the discretized sectors.
Section 6 details the process of nonlinear interpolation pre-
senting two distinct methods.

5. Sector Selection and Discretization

Traditionally, the field of view of the array is divided
into sectors that are small enough to keep the interpola-
tion bias bounded. These sectors can be made larger or
smaller depending on the accuracy desired for the inter-
polation. After the field of view is divided the sectors are
discretized uniformly using a fine grid and sector-by-sector
interpolation is performed.

To avoid performing sector-by-sector interpolation this
work uses a single combined sector containing all regions
of the field of view of the array where significant power is
received. Considering that the response of the true array
needs to be known to construct a transformation of the
interpolation of the received signal, this response can be
used to detect angular regions where significant power is
received in order to detect sectors adaptively. To this end,
the conventional beamformer [39] can be applied to provide
an estimate of angular regions where significant power is
received. The beamformer yields the normalized power
response

P (θ, φ) =
aH(θ, φ) R̂XX a(θ, φ)

aH(θ, φ) a(θ, φ)
∈ R. (10)

Figure 3 shows an example of the real data output of (10)
for a signal received at the six element linear physical an-
tenna array shown in Figure 7 with θ = 0◦, φ = 20◦, SNR
= 30 dB, and N = 10.

In physical systems, the result of (10) is discrete in θ
and φ, and can be written as

P [z, v] = P (−90◦ + (z ·∆θ),−90◦ + (v ·∆φ)) = P (θ, φ),
(11)

with z ∈ N0, v ∈ N0 , θ ∈ D∆θ
, and φ ∈ D∆φ

where

D∆θ
= {−90◦,−90◦ + ∆θ, ..., 90◦ −∆θ, 90◦}, (12)

D∆φ
= {−90◦,−90◦ + ∆φ, ..., 90◦ −∆φ, 90◦}. (13)
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Figure 4: Selected sectors and example of sector bounds

Here, ∆θ ∈ R+ and ∆φ ∈ R+ are the resolution of the
azimuth and elevation angles of the power response (10),
respectively.

Figure 4 presents an example of the real data output
of (11) when two signals are transmitted from (−5◦,0◦)
and (30◦,−10◦), with SNR = 30 dB, and N = 10 at the
physical array shown in Figure 7. This normalized power
response is scanned for sectors Sk , and for each sector, the
respective lower bounds θlk ∈ D∆θ

and φlk ∈ D∆φ
, as well

as the upper bounds θuk ∈ D∆θ
and φuk ∈ D∆φ

are defined
as shown in Figure 4. A threshold ασ2

n, with α ∈ R+,
defines a sector Sk considering the criterion P (θ, φ) ≥ ασ2

n

and k = 1, . . . ,K . A sector can be defined as

Sk = Θk × Φk = {(θ, φ)| θ ∈ Θk ∧ φ ∈ Φk}, (14)

where

Θk = {θ| θlk ≤ θ ≤ θuk} ⊆ D∆θ
, (15)

Φk = {φ|φlk ≤ φ ≤ φuk} ⊆ D∆φ
, (16)

and
∀K
k, k′ = 1
k 6= k′

Sk ∩ Sk′ = ∅. (17)

A combined sector can be defined as

S = S1 ∪ · · · ∪ Sk ∪ · · · ∪ SK ⊆ D∆θ
×D∆φ

. (18)

Most array signal processing techniques assume the
presence of isotropic elements. However, in reality, the
responses of antennas are never isotropic. Therefore, even
for linear arrays, the sectors have to be built taking into
account the elevation angle in order to obtain an accurate
interpolation. However, for most linear antenna arrays
with non-isotropic element responses, the resolution with
which the elevation angle φ can be estimated is expected
to be very low (assuming isotropic elements it is not pos-
sible at all). Furthermore, for elevation angles close to
zenith, i.e. φ u 90◦, the angular resolution in azimuth
is decreased. This is expected even for arrays composed
of perfectly isotropic antennas as there will be no phase
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difference for different azimuth angles when elevation an-
gles are close to zenith. This is shown in Figure 3. The
fact that there is a low angular resolution in elevation im-
plies that the response of the array is not heavily affected
by changes in elevation angle. Therefore, choosing a fixed
elevation angle for the interpolation of a sector is often
sufficient if the chosen elevation angle is sufficiently close
to the elevation angle of the received signal.

The proposed sector detection and selection technique
can be directly applied to two-dimensional arrays such as
uniform rectangular arrays (URAs). For such arrays, the
elevation estimation will have a greatly improved resolu-
tion. Moreover, for such arrays, it will often be benefi-
cial to interpolate the response in elevation to allow high-
resolution techniques to be applied.

Within each of the detected sectors Sk several nearly
coherent and closely-spaced signals could be received. Since
these signals are represented by similar array responses, an
interpolation considering this sector is efficient for all re-
ceived signals. After interpolation, such signals can be sep-
arated with techniques such as SPS and FBA, allowing the
application of a high-resolution DOA estimation method
to jointly estimate the parameters of all the detected sig-
nals. Thus, the separation of closely-spaced sources is only
limited by the high-resolution DOA estimation method
and by the number of elements of the antenna array, but
not by the array interpolation itself.

To address cases where the noise floor is high a large α
can be used. However, this means that only large sectors
are detected, at the cost of discarding smaller sectors that
are related to a signal component. On the other hand,
smaller α means that smaller sectors are detected but at
the cost of allowing noise to be mistakenly detected as a
sector. Selecting noise regions as sectors will results in a
smaller estimation bias than leaving regions with signal
power out of the transform. Therefore, for cases where
the noise floor is high compared to the signal strength,
an α that sets the cutoff to be close to the noise floor is
recommended.

For arrays where the response does not vary strongly
with elevation, or for setups where signals are received by
the array at a given narrow set of elevation angles, φ can be
fixed. Thus, the output of (10) becomes one-dimensional,
and the sector selection shown in Figure 4 can be simplified
to a one-dimensional problem as shown in Figure 5.

In this case, the sectors Sk are defined only by their
lower and upper bounds θlk and, θuk respectively. Previous
works on array interpolation created a discrete uniform
set of angles within each sector. Instead of using uniform
sector discretization, the next subsections present two dif-
ferent methods for sector discretization aiming to preserve
the statistical properties of the considered sectors Sk.

5.1. UT Discretization
The UT [23] is a transformation used to transform a

continuous probability density function (PDF) into a dis-
crete probability mass finction (PMF). The UT can be
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Figure 5: Selected sectors and respective bounds for one-dimensional
case

applied in array interpolation to discretize the detected
sectors in such a way that the statistical properties, the
moments, of the detected sectors are preserved in its dis-
crete form. Thus, no statistical information is lost, since
a PDF can be fully represented by its moments as stated
in the following theorem.

Theorem 1. A probability density function can be entirely
described by its moments.

Proof. A proof can be found in Appendix A.

The UT discretization can be applied by solving the
nonlinear set of equations

k−1∑
j=1

wjS
k
j = w1S

k
1 + ...+ wk−1S

k
k−1 = E{rk}. (19)

where Sj are known as sigma points, wj are its respec-
tive weights, and r is the value assumed by a continuous
random variable r̃. From (19) it is clear that in order to
preserve the characteristics of r̃ up to the k-th moment, it
is necessary to calculate k−1 sigma points and its weights
by solving a nonlinear system of equations. Thus, there is
a trade-off between simplicity in the calculation and the
accuracy of the representation of higher order moments.

The UT can be applied to an approximation of the
concentrated loss function lc(X;θ,φ) and thus the log-
likelihood l(X;θ,φ) of the DOA estimation problem, which
is derived in the following theorem. The concentrated loss
function lc(X;θ,φ) and the log-likelihood l(X;θ,φ) of the
DOA estimation problem at hand are defined in (B.1) and
(B.4), and

θ = [θ1, . . . , θd]
T, (20)

φ = [φ1, . . . , φd]
T. (21)

Theorem 2. The concentrated loss function lc(X;θ,φ)
for a DOA estimation problem can be approximated for
each detected sector Sk by the normalized power response
of the conventional beamformer (10).

Proof. A proof can be found in Appendix B.
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Following the approximation derived in Theorem 2 the
concentrated loss function and thus the log-likelihood with
respect to each sector Sk can be considered as a separate
PDF each when applying the UT. In order to preserve
the first and the second moment of the approximated log-
likelihood, the number of points are chosen to transform
each detected sector Sk must be larger or equal than 3.
Under this constraint and under the assumption that the
input noise follows CN (0, σ2

n), the respective PDF charac-
teristics for each sector Sk are mainly preserved. Figure 6
presents how the concentrated loss function lc(X;θ,φ) can
be represented using the UT for a linear array assuming
uniform antenna responses of the different antennas in ele-
vation. A total transformation sector by concatenating all
the sigma points given by the UT for the detected sectors
can be written as

AS = [a(S1),a(S2), ...,a(ST )] ∈ CM×T , (22)

where T is the total number of points used to discretize
all the detected sectors.

The proposed UT-based discretization is well suited
for linear arrays that have a uniform response in eleva-
tion. The calculation of the sigma points St and weights
ωt with t = 1, . . . , T of the UT transformation is compu-
tationally expensive. Therefore, calculating multiple sets
of points across multiple elevations may become infeasible
depending on the application and system at hand. The
UT can be very useful also when applying linear interpo-
lation, as it can be used to ensure that the least squares
calculation of the transformation matrix is a determined
problem instead of an overdetermined one.

5.2. Principal Component Discretization

For most interpolation methods presented in the litera-
ture, the interpolated sectors are discretized using a simple
uniform discretization. The discretization is usually done
such that the discrete angles are closely spaced. Therefore,
the steering vectors of such closely spaced angles are highly
correlated. This work proposes the application of princi-
pal component analysis (PCA) to avoid problems caused
by the correlation in predictors as well as to minimize the
computational load of the transformation.

Ideally, AS would be set up such that ASAH
S = IM .

However, as stated previously, this is often not the case
with ASAH

S = RASAS 6= IM . PCA aims to find a matrix
P such that

PAS = BS , (23)

where BSBH
S = IM . P can be obtained by performing the

eigendecomposition of RASAS

RASAS = EΣEH, (24)

and setting P = E. The proposed PCA pre-processing
can be used to create a better set of predictor variables for
the interpolation and to reduce the dimensionality of the
problem by excluding any eigenvectors associated to very
small eigenvalues.

6. Nonlinear Interpolation

In this section two independent nonlinear alternatives
to array interpolation, allowing the application of FBA
and SPS in highly correlated signal scenarios, are pre-
sented. Subsection 6.1 presents an interpolation approach
based on the MARS regression method, allowing a model
to be created expressing nonlinear relationships between
the true and the desired array response. Subsection 6.2
shows an interpolation approach based on GRNNs, this
approach can be implemented in a parallel manner, mak-
ing it a good candidate for array interpolation under real-
time constraints.

6.1. MARS Based Interpolation

This work proposes a nonlinear interpolation method
based on the MARS technique [24]. The proposed interpo-
lation approach builds an augmented mapping that splits
the real and imaginary parts of the response of each of the
antennas of the array, that is, a total of 2M MARS models
are built to interpolate the array response with respect to
the combined sector S. This mapping can be written as

∀ (θ, φ) ∈ S :

[
<{ā(θ, φ)}
={ā(θ, φ)}

]
= f (a(θ, φ))

=



∑LR1
`=1 c

R
`,1F

R
`,1 (<{a(θ, φ)})
...∑LRM

`=1 c
R
`,MF

R
`,M (<{a(θ, φ)})∑LI1

`=1 c
I
`,1F

I
`,1 (={a(θ, φ)})
...∑LIM

`=1 c
I
`,MF

I
`,M (={a(θ, φ)})


, (25)

where cRlm and cIlm are the weighting constants, FRlm and
F Ilm are the basis functions and LRm and LIm are the num-
ber of functions and weighting constants of each model.
Furthermore, <{ā(θ, φ)} and ={ā(θ, φ)} denote the real
and imaginary part of vector ā(θ, φ), respectively. The
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basis functions FRlm and F Ilm are hinge functions or mul-
tiplications of hinge functions [24]. The original general-
ized cross-validation (GCV) for the backward pass used in
MARS can be reformulated considering the array interpo-
lation problem as

<{GCV} =

1
|S|
∑

(θ,φ)∈S(<{ā[m](θ, φ)} − fRm(a(θ, φ)))2

(1− LRm+p
LRm−1

2

|S| )2

,

(26)

={GCV} =

1
|S|
∑

(θ,φ)∈S(={ā[m](θ, φ)} − f Im(a(θ, φ)))2

(1− LIm+p
LIm−1

2

|S| )2

,

(27)
where fRm and f Im are the real and imaginary part of the
model for the m-th antenna, respectively. Both <{GCV}
and <{GCV} are used to avoid over-fitting, that is, to
reduce the complexity of the model created in order to
avoid fitting of the noise or of measurement errors of the
array response. ā[m](θ, φ) denotes the m-th element of
the virtual array response. To use this approach in an
online system the models can be built in an initialization
step. Sectors of interest for the application of the MARS
interpolation can be selected and a model can be built
and stored as a look-up table. The data received can be
interpolated snapshot-wise with[

<{x̄[n]}
={x̄[n]}

]
= f (x[n]) , (28)

where x[n] ∈ CM×1 is the n -th column of matrix X with
n = 1, . . . , N .

In some cases, the antenna array will have a response
which is similar enough to the desired response in some
of its field of view so that a linear approach yields good
results. Thus, the MARS approach can be used only on
portions of the field of view where the true response differs
strongly from the desired one.

The MARS approach is especially useful for arrays with
a small number of elements. For linear approaches, the de-
grees of freedom of the linear approach are limited by the
number of antennas in the virtual array. It is possible to
increase the degrees of freedom by creating a virtual array
with a larger number of antennas, however, this will lead to
a transformation matrix that is ill-conditioned and results
in a large bias in the DOA estimates. The MARS ap-
proach, on the other hand, can build as many hinge func-
tions and relationships between them as necessary. While
MARS will still benefit from having a larger array, since
it provides more input variables for the model, it is less
sensitive to a reduction in the size of the array.

6.2. GRNN Based Interpolation
GRNNs [25] are a type of neural network used for gen-

eral regression problems that are extended in this work for
the problem of array interpolation.

Classic interpolation relies on transforming an array
response over the discrete set of angles S. In linear array

interpolation, the choice of points that belong to S is usu-
ally an arbitrary one, based solely on the predefined sector
bounds and the chosen angular resolution. When apply-
ing a linear approach, angular resolution is usually chosen
to be as high as possible, thus, the set of points belong-
ing to S is usually closely spaced. This is not necessary
when applying the GRNN since it is capable of interpolat-
ing between multiple sets of training data. In fact, a dense
set of training points will result in an increased computa-
tional load while providing very little benefit to the overall
accuracy of the GRNN based array interpolation.

The neural network representing the real and imag-
inary parts of the array can be built by extending the
original structure of GRNNs to the application at hand,
resulting in the mapping[

<{x̄[n]}
={x̄[n]}

]
= f (x[n], ā(θ, φ),a(θ, φ)) , (29)

and

<{x̄[m][n]} =

∑
(θ,φ)∈S <{ā[m](θ, φ)}e−

ξ(θ,φ)

2σ2∑
(θ,φ)∈S e

− ξ(θ,φ)
2σ2

, (30)

={x̄[m][n]} =

∑
(θ,φ)∈S ={ā[m](θ, φ)}e−

ξ(θ,φ)

2σ2∑
(θ,φ)∈S e

− ξ(θ,φ)
2σ2

, (31)

where σ2 is the smoothness parameter, and

ξ(θ, φ) = ||x[n]− a(θ, φ)||22. (32)

Once the data has been interpolated to the desired array
structure, array signal processing schemes such as FBA,
SPS or ESPRIT can be applied.

Linear interpolation methods and the MARS method,
as shown in (28), are direct functions of the received sig-
nal plus noise at the input of the array. Therefore, these
methods have noise coloring as a side effect that needs to
be taken into account when performing DOA estimation.
On the other hand, there is no noise color introduced by
the GRNN based interpolation, therefore pre-whitening is
not necessary. This can be observed by considering (30)
and (31) which are a sum of the desired ideal response vec-
tors weighted by the similarity between the received signal
and its respective true response vector counterpart. Thus,
using the GRNN method, a larger noise level will lead to
the interpolation being steered away from the real direc-
tion from where the signal is received. Thus, the output
of the interpolation can be seen as noiseless, but not error
free, as the noise present in the original data induces in-
terpolation errors that will lead to a bias in the final DOA
estimation.

One of the advantages of applying GRNNs to array
interpolation is that the sectors considered for transfor-
mation can be made very large while having a small effect
on the accuracy of the interpolation. As shown in (30, 31),
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in case the input resembles the data used for the training
in a certain region of the transformed sector, this data will
have a larger weight. On the other hand, if the input is
distant from any region of the transformed sector, this re-
gion will have very little influence on the output of the
interpolation.

Therefore, with a GRNN it is possible to transform
very large regions of the field of view of the array without
suffering from the same problems as the ones present in
linear array interpolation, where the transformation error
grows as the transformed region grows. On the other hand,
transforming a large region using the GRNN will increase
the computational cost of the interpolation. Due to the
parallelizable structure of GRNNs, it is possible to imple-
ment the proposed GRNN array interpolation in a parallel
manner, leading to a faster interpolation. Thus, the pro-
posed GRNN array interpolation is a possible alternative
for precise array interpolation in real time applications.

7. Numerical Simulations

The performance of the proposed algorithms is tested
considering a manufactured 6 × 1 linear antenna array
shown in Figure 7. The single antennas are circularly po-
larized dielectric resonator antennas (DRA) [40], exhibit-
ing a strong miniaturization of the aperture. The anten-
nas are tuned to work at GPS L1 frequency band centered
around 1575.42 MHz in standalone configuration. Once in
the array, no attempt has been made to re-tune them, in
order to emphasize the mutual coupling effects and even-
tual degradation. This 6 × 1 linear array was especially
designed for research on mutual coupling with adjustable
inter-element spacing of the 6 antennas. The small di-
mensions of the single antennas allow to place them quite
close to each other, up to a minimum distance of 30 mm
(≈ 0.16λ at L1 central frequency). The following simula-
tions consider array responses of the manufactured array
measured in an anechoic chamber as well as array respon-
ses simulated using a 3D electromagnetic simulator (AN-
SYS HFSS). Thus, realistic assessment of the proposed al-
gorithms can be achieved considering measured and prop-
erly simulated array responses.

The simulations are performed considering the receiver
has no previous knowledge of the received signal. The com-
bined sector is detected and discretized according to the
methods presented in Section 5. After discretization the
combined sector is interpolated using the methods pro-
posed in Section 6. The model order of the interpolated
data then is estimated by applying FBA and SPS adap-
tively and using RADOI [10] as the model order estimation
method following the procedure proposed in [35]. Once
model order is estimated the DOA estimates are obtained
using TLS-ESPRIT [6].

For obtaining R̂XX N = 100 snapshots are used and
the Root Mean Squared Error (RMSE) is calculated with
respect to 1000 Monte Carlo simulations. Two signals from
θ1 = 45◦ and θ2 = 15◦ with σ2

1 = σ2
2 = 1 and γ1,2 = 1

according to (4) are impinging on the array. The given
RMSE is

RMSE =

√√√√ 1

K

K∑
k=1

(
(θ̂k1 − θ1)2 + (θ̂k2 − θ2)2

)
, (33)

where θ̂ki is the estimate of θi at the k-th Monte Carlo run.

Figure 7: 6x1 antenna array: ANSYS HFSS model (left), prototype
(right).

7.1. Performance of Proposed Methods With Measured Ar-
ray Response Knowledge

The first set of simulations studies the performance of
the proposed methods using the measured array response
to build the interpolation models. Figure 8 presents the
performance of the discretization and interpolation meth-
ods proposed in this work when the array is measured with
0.4 λ inter-element spacing. As a benchmark, the results
achieved with no interpolation, denoted as raw data in
the figures, with the linear interpolation approach from
[35], and the Cramér–Rao lower bound (CRLB) [14] are
presented. The results show that, if no interpolation is
applied, a constant bias is present for the DOA estimates
even at high SNRs. The linear approach is capable of pro-
viding a DOA estimation accuracy superior to one degree
at positive SNRs. The proposed nonlinear approaches offer
greatly improved performance when compared to the lin-
ear approach. The MARS approach is shown to benefit sig-
nificantly from the UT discretization. This is expected as
the UT discretization reduces the overall complexity and
possible over-fitting of the MARS model, as the mapping
needs to consider only the statistically significant regions
of the sector. The proposed GRNN approach is shown to
have a very similar performance when either PCA or the
UT are used as a discretization method. As the computa-
tional complexity of the PCA-based discretization method
is significantly smaller than that of the UT-based method,
PCA becomes more attractive when the GRNN method is
used for interpolation.

In the second set of simulations, presented in Figure 9,
the inter-element spacing between is set to 0.2 λ. In this
configuration the mutual coupling between antenna ele-
ments is very strong and the radiation patterns are highly
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Figure 8: DOA estimation performance with 0.4 λ element separation

distorted when compared to isotropic patterns. The differ-
ence in performance between the proposed nonlinear meth-
ods and the bench mark linear method becomes more sig-
nificant when compared to the 0.4 λ inter-element spacing.
The challenging scenario also highlights the performance
difference between the proposed discretization and inter-
polation methods. The performance of the MARS based
method with the UT pre-processing significantly outper-
forms its PCA variant.
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Figure 9: DOA estimation performance with 0.2 λ element separation

7.2. Performance of Proposed Methods With Simulated Ar-
ray Response Knowledge

Obtaining the response of an antenna over its entire
field of view with a fine enough resolution for perform-
ing array interpolation requires a well equipped anechoic
chamber. In case such a chamber is not available, the in-
terpolation can be done using a properly simulated array
response. With the next set of simulations the perfor-
mance of the proposed methods if the array response that
is considered by the algorithms is not the true (measured)
array response but is derived from simulations using a 3D
electromagnetic simulator (ANSYS HFSS) is studied. The
results shown in Figure 10 were obtained by setting the
inter-element spacing of the antennas to 0.4 λ. The sim-
ulation results of the array interpolation methods show
that the performance of all methods is degraded by the
imperfect knowledge of the array response (simulated ar-
ray response). Despite the decrease in performance, the
proposed methods are capable of achieving an accuracy of
a tenth of a degree for moderate SNRs.
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Figure 10: DOA estimation performance for model built with simu-
lated data with 0.4 λ element separation

Figure 11 presents the results of the simulations when
the inter-element is 0.2 λ and the model is built using a
simulated array response. In this case the proposed PCA
approaches suffer heavy degradation. This is due to the
fact that the principal components of the simulated array
response do not represent the principal components of the
true array response (measured array response) well enough
for building a proper model. In this scenario the linear
approach is not capable of providing an accuracy below
one degree.

-15 -10 -5 0 5 10 15

10−2

10−1

100

101

R
M
S
E

[◦
]

SNR [dB]

Raw data
Linear

PCA MARS
UT MARS

PCA GRNN
UT GRNN

CRLB101.9

10−2.5

Figure 11: DOA estimation performance for model built with simu-
lated data with 0.2 λ element separation

7.3. Failure Rate Performance

In the last set of simulations the failure rate of the TLS-
ESPRIT used for DOA estimation is studied. For this sim-
ulation a single signal is received by the array with θ = 80◦

and the array has an inter-element spacing of 0.2 λ. Figure
12 compares the failure rates of non-interpolated data with
interpolated data using the UT-based discretization and
the MARS method. For these simulations TLS-ESPRIT
is considered to fail if the eigendecomposition of the so-
lution for the shift invariance equation of TLS-ESPRIT
yields complex eigenvalues. The simulations show that the
proposed interpolation method is capable of significantly
reducing the failure rate of subspace based methods for
regions near end-fire of the array.
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Figure 12: TLS-ESPRIT failure rate for 0.2 λ element separation

8. Conclusions

In this work two novel discretization methods based on
the UT and PCA were presented. The UT-based method
is capable of discretizing the detected sectors while pre-
serving their statistical properties. Due to the computa-
tional complexity involved this method is best suited for
arrays with a small number of elements. The PCA-based
method is best suited for arrays with a large number of
elements, as it can be used to reduce the dimensionality of
the problem resulting in a lower computational load.

Additionally, two novel nonlinear interpolation meth-
ods were presented which are derived from nonlinear re-
gression methods, MARS and GRNNs. The MARS inter-
polation can be calculated offline, allowing it to be used in
real time systems in cases where the signals are expected to
come from a limited region of the field of view of the array
and is capable of achieving good performance at moderate
to high SNRs. The GRNN-based approach has reduced
computational complexity compared to the MARS due to
the high degree of parallelization of the method and pro-
vides a better performance for low SNRs.
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Appendix A. Proof of Theorem 1

Proof. Let a random variable r̃ have a probability distri-
bution function pr̃(r), r ∈ R. Assuming that a moment
generating function Mr̃(k) exists, it is equivalent to the
two-sided Laplace transform of r̃. Hence,

Mr̃(−k) = L{pr̃(r)}(k) + L{pr̃(−r)}(−k), (A.1)

where L{pr̃(r)}(k) is the Laplace transform of pr̃(r). Thus,
Mr̃(−k) is unique iff both sides of the Laplace transform
are unique. Therefore, since the Laplace transform of a
function is unique, so is Mr̃(−k). Thus, a PDF can be
uniquely described by its moments provided that all mo-
ments exist and that pr̃(r) is integrable on any finite subset
over its support.

Appendix B. Proof of Theorem 2

Proof. The log-likelihood can be given as

l(X;θ,φ) = −MN log(πσ2
n)

− 1

σ2
n

tr
{

(X−AS)− (X−AS)H
}
, (B.1)

where tr{.} is the trace operator. Differentiating (B.1)
with respect to σ2

n and equating to zero leads an estimate
for the noise variance

σ̂2
n =

1

MN
tr
{

(X−AS)− (X−AS)H
}
. (B.2)

Substituting (B.2) into (B.1), differentiating with re-
spect to S, and equating to zero gives an estimate for S

Ŝ = (AH A)−1AHX. (B.3)
Then, substituting (B.2) and (B.3) into (B.1) yields

(θ̂, φ̂) = arg max
θ,φ

tr
{

A(AHA)−1AHR̂XX

}
= arg max

θ,φ
lc(X;θ,φ). (B.4)

Assuming that the received signals have low spatial
correlation with

∀d
i, i′ = 1
i 6= i′

aH(θi, φi)a(θi′ , φi′)→ 0, (B.5)

the concentrated loss function close to the global optimum
can be approximated as

arg max
θ,φ

lc(X;θ,φ)

≈ arg max
θ,φ

d∑
i=1

aH(θi, φi) R̂xx a(θi, φi)

aH(θi, φi)a(θi, φi)

≈ arg max
θ,φ

K∑
k=1

1

χk
P (θ, φ) |(θ,φ)∈Sk ,

(B.6)

where with θ ∈ D∆θ
and φ ∈ D∆φ

χk =
∑

(θ,φ)∈Sk
P (θ, φ) ∆θ∆φ. (B.7)
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Remark 1. The assumption that signals have low spatial
correlation can be found valid for many cases, especially,
for arrays with M → ∞. However, signals can still have
high correlation in time with cross-correlation coefficient
γi,i′ → 1.

Remark 2. The approximation introduced in (B.6) results
to ∀(θ,φ)/∈S lc(X;θ,φ) , 0. The normalization χk with
respect to each sector Sk makes it possible to consider the
concentrated loss function for each sector Sk as a separate
PDF when applying the UT.


