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Abstract—Important array signal processing techniques such
as Spatial Smoothing, Forward Backward Averaging and Root-
MUSIC require arrays with precise and specic geometries and
responses. However, building sensor arrays with such demanding
characteristics is not always possible. To deal with these possible
limitations the real array response can be interpolated into the
desired response applying array interpolation methods.

In this work we study array interpolation methods for cases
where the knowledge of the real array response is incomplete
or contains errors. To address these imperfections a novel Total
Least Squares (TLS) approach for calculating the transforma-
tion matrices is presented. Furthermore, a novel reduced rank
regression approach is used to reduce the bias introduced by the
transformation matrix onto the nal direction of arrival (DOA)
estimation.

Index Terms—array interpolation, array mapping, reduced
rank regression, total least squares

I. INTRODUCTION

Important array signal processing and direction of arrival

(DOA) estimation techniques such as Spatial Smoothing (SPS)

[1], Forward Backward Averaging (FBA) [2], Quadratic Max-

imum Likelihood (IQML) [3], Estimation of Signal Param-

eters via Rotational Invariance Techniques (ESPRIT) [4],

Root Weighted Subspace Fitting (Root-WSF) [5], and Root-

MUSIC [6] require specic array responses. IQML, SPS,

Root-WSF, and Root-MUSIC demand an array response with

a Vandermonde structure while the ESPRIT demands a shift

invariant array response and FBA demands a centro-hermitian

array response. Constructing arrays with such properties in

real implementations can be very demanding and, even if

possible, there is no guarantee that the response will be kept

invariant over time as factors such as temperature or aging

may affect the response. As a solution to these limitations the

array interpolation (mapping) was rst proposed in [7]. Array

interpolation is used to transform the known real response of

the array into a desired virtual response using a transformation

matrix.

Array interpolation can be seen as a direct application of the

general linear model, where the true array response represents

the multivariate measurements matrix and the desired array

response represents the design matrix used in this model. In

the case where the real array response for a given DOA is

assumed to be perfectly known and the elements of the desired

array response are exogenous (fully independent from each

other) the simple least squares estimation provides minimum-

variance mean-unbiased estimation. Unfortunately, in practice,

these assumptions usually can not be fullled leading to a

suboptimal and biased estimation. In most cases the real array

response can only be determined with empirical measurements

which are often corrupted by measurement errors. While many

different methods have been proposed for the calculation of a

transformation matrix such as [8], [9], [10] ,[11], [12], [13],

[14], [15] they all share the assumption of having perfect

knowledge of the real array response.

Imperfect knowledge of the real array response will also

degrade the performance of Maximum Likelihood (ML) meth-

ods [16], [17] or its extensions such as the Expectation Maxi-

mization (EM) [18], [19], [20], [21] and the space Alternating

Generalized Expectation Maximization (SAGE) [22], [23],

[24] since the assumed model will be mismatched with the

real array response model. Furthermore, to achieve precise

estimations these methods require a-priori knowledge of the

number of signals present, when highly correlated signals

are present estimating the number of incoming signals using

model order selection methods such as [25], [26], [27], [28]

may require the application of SPS or FBA to achieve a precise

estimation. This can only be done with Vandermonde and

centro-hermitian arrays, respectively.

Another common characteristic of most array interpolation

methods is performing a sector-by-sector processing. Since

transforming a large area of the eld of view of the array can

result in very large transformation errors unless the array is

composed of a very large number of antennas the eld of view

is divided into regions called sectors. Each sector is divided

into a dense and discrete set of angles used for the calculation

of the transformation matrix. Since the angular separation

between adjacent angles is very small the neighbor elements

of the sector are highly correlated, this correlation directly

impacts the estimation bias introduced by the transformation

since the calculation of the transformation matrix is performed

considering a highly correlated set of predictors.

In this work we present a Total Least Squares (TLS)

approach for the calculation of the transformation matrix in

order to deal with imperfect knowledge of the real array

response. We also propose the application of a reduced rank

technique for the calculation of the transformation matrix to

achieve reduced bias in the nal DOA estimation.

The remainder of this paper is organized in four sections. In

Section II the data model used in this work is presented and

detailed. Section III presents a review on the basic concepts

of array interpolation and details a novel array interpolation

method using TLS and rank reduction. Section IV presents a

set of numerical simulations to validate the performance of the

proposed method. Lastly, conclusions are drawn in Section V.



II. DATA MODEL

We consider a set of d wavefronts impinging onto an

antenna array composed of M antenna elements. The received

baseband signal can be expressed in matrix form as

X = AS+N ∈ C
M×N , (1)

where S ∈ C
d×N is the matrix containing the N symbols

transmitted by each of the d sources, N ∈ C
M×N is the noise

matrix with its entries drawn from CN (0,σ2
n), and

A = [a(θ1), a(θ2), ..., a(θd)] ∈ C
M×d, (2)

where θi is the azimuth angle of the i−th signal and a(θi) ∈
C

M×1 is the array response (empirical measurement).

The received signal covariance matrix RXX ∈ C
M×M is

given by

RXX = E{XX
H} = ARSSA

H +RNN, (3)

where ()H stands for the conjugate transposition, and

RSS =
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where σ2
i is the power of the i−th signal and γa,b ∈ C,

|γa,b| ≤ 1 is the cross correlation coefcient between signals

a and b. RNN ∈ C
M×M is a matrix with σ2

n over its diagonal

and zeros elsewhere. An estimate of the signal covariance

matrix can be obtained by

R̂XX =
XX

H

N
. (5)

III. ARRAY INTERPOLATION

In this section array interpolation is reviewed in Subsection

III-A, a novel TLS approach is presented in III-B and a novel

reduced rank model is presented in III-C.

A. Classical Array Interpolation

Array interpolation is a set of techniques that aim to predict

what signal would be received at an antenna array with a

specic desired geometry based on the signal that was received

by a real antenna array. In matrix form the transformation tries

to achieve

BAS = ĀS , (6)

where AS and ĀS are array response matrices constructed

considering the discrete set of angles

S = {lS , lS +∆, ..., uS −∆, uS}. (7)

Here, lS is the lower bound, uS is the upper bound of sector

S and ∆ is the angular resolution of the transformation. The

matrix B can be seen as the matrix that achieves the best

transform between a set of vectors AS and ĀS . If AS is

error free B can be obtained by a least squares (LS) t

B = ĀSA
†
S ∈ C

M×M , (8)

where ()† stands for the Moore–Penrose pseudo-inverse. Note

that B is calculated differently from the usual linear regression

formulation since it is obtained as to be multiplied by the

right side of the original array response matrix, this is done

so that B can then be applied directly on the estimated signal

covariance matrix

R̄XX = BR̂XXB
H
∈ C

M×M , (9)

since

BRXXB
H = BASS

H
A

H
B

H +BNN
H
B

H

= ĀSS
H
Ā

H +BNN
H
B

H. (10)

As shown in (10) the transformation also affects the noise

component, leading to colored noise at the output. This re-

quires that some sort of prewhitening is applied prior to the

DOA estimation. For prewhitening schemes, we refer to [29]

for the matrix case and [30] for the tensor case.

The calculation of B will usually be an overdetermined one,

since there will be more discrete angles in the set S than

antennas in the virtual array. This results in an imperfect trans-

formation, a measure of this imperfection is the transformation

error given by

(S) =

∥

∥ĀS −BAS

∥

∥

F
∥

∥ĀS

∥

∥

F

∈ R
+. (11)

Larger sectors will lead to larger transformation errors, and

while it is possible to keep the transformation error as low

as desired by keeping the sector sizes small this may lead to

further problems such as demanding a very large number of

estimations to be performed, one for each sector. It is possible

to increase the number of antennas at the virtual array to obtain

a smaller transformation error, this, however, will lead to an

ill conditioned transformation matrix and to a large bias in

the nal DOA estimations. The number of antennas in the

virtual array is usually chosen as to be equal or smaller then

the number of antennas in the real array.

The problem of determining the sectors, their sizes and the

resolution used for constructing the array response is a very

complex optimization problem. For the purpose of this paper

sectors are chosen according to [8] with (S) < 10−3.

B. TLS Array Interpolation

In practice the real array response AS is not perfectly

known. Since AS can only be estimated via empirical mea-

surements that are corrupted by measurement errors the normal

least squares approach is degraded. Although the virtual array

is perfect, since it is a design variable, its output is corrupted

by the noise present at the real array elements. An alternative

approach is to use a regression method that takes into account

errors on both sides. In this work we propose the application

of the total least squares method. In this approach we calculate

a intermediary transformation matrix B̃ ∈ C
M×M using the

TLS since it takes into account the presence of unknown

response errors in AS , such as measurement errors when

obtaining the real array response empirically, represented by

the matrix E, and possible output errors, caused, for example,

by the additive noise present at the antenna elements during



sampling (nite sampling effect, colored noise), at ĀS , repre-

sented by F. B̃ is obtained by nding the TLS solution to

(AS +E)HB̃ = (ĀS + F)H. (12)

The matrices involved in (12) are arranged to allow the TLS

problem to be solved using its traditional formulation. A nal

transformation matrix B can be obtained by

B = B̃
H. (13)

This is important since it allows the TLS solution to by applied

as a right hand multiplication and achieve the same results

shown in (10).

This step will only improve the results over the standard

LS formulation (6) if the knowledge of AS is imperfect.

On the other hand the TLS formulation is equivalent to

the LS formulation when AS is perfectly known, therefore

applying the TLS will never result in performance degradation

when compared to the LS. The TLS approach does however

come at the cost of increased computational complexity when

compared to the LS formulation.

C. Reduced Rank Regression

The set S is composed of closely spaced angles, usually the

angular resolution∆ is smaller than a degree, this will result in

a high degree of correlation between the adjacent columns of

the matrices AS and ĀS . Both the TLS and LS formulations

are equivalent to regressing each column of matrices AS and

ĀS separately. This is a suboptimal approach since it does

not take into account the relation between the responses of

the closely spaced angles. One of the main problems of this

approach is that it is unstable with respect to the data it is

transforming. If not all the angles that compose A are present

in S the results may vary drastically.

A more statistically signicant and robust transformation

can be obtained by performing a reduced rank regression (RR).

This regression tries to transform the correlated set of predic-

tors AS into a set of linearly independent predictors. This

can be done by performing a reduced rank (RR) projection

that takes into account only the principal components of AS .

Performing the singular-value decomposition (SVD)

B(AS +E) = UDV
H, (14)

the singular-vectors of U related to the r largest singular-

values are selected forming Ur ∈ C
M×r and the reduced

rank Br is given by the orthogonal projection

Br = (UrU
H
r )B ∈ C

M×M . (15)

r can be selected using a model order selection scheme,

in practice we obtain a transformation matrix under a rank

restriction. Note that this projection is equivalent to performing

a dimension reduction of the transform matrix, since now

the rows of B lie on a subspace in C
r. Also note that this

projection will also increase the transformation error calculate

with (11) for Br, this, however, should not be misinterpreted

as a reduction in the overall efciency of the transformation

since the nal goal is not to accurately transform AS but to

precisely and reliably estimate the DOAs present in A.

Both the TLS and reduced rank projection step require the

calculation of a singular-value decomposition and result in a

higher extra computational burden. The extra computational

complexity does not need to be included in each estimation

since most array interpolation methods use a sector-by-sector

processing scheme where the sectors used for the interpolation

are independent of the received signal, thus the calculation of

the transformation matrices can be done a priori.

IV. NUMERICAL SIMULATIONS AND DISCUSSION

To study the performance of the proposed method a set

of numerical simulations is performed. The performance of

the proposed method is assessed in the presence of spatially

white Gaussian noise and errors in the known array response.

The known array response in the simulations shown in Figure

2 is constructed by randomly displacing the elements of a

Uniform Linear Array (ULA) composed of M = 8 antennas

with element spacing of c = λ

2
to a point on a circle with

center on the original antenna position and radius a+b = 0.2λ
2

,

where λ is the wavelength of the carrier frequency of the

signal, to simulate errors in the known response the displace-

ment is only known up to a = 0.1λ
2

. Figure 1 shows a

graphical representation of how the antennas are displaced.

While physical displacement is used in this work the same

method can be used to deal with non linearity in the antenna

array with respect to the DOAs of the received signals or

with imperfect responses of individual antennas in the array.

For each simulation run a different point is randomly chosen

within the displacement circle as to avoid a displacement

where all sensors are displaced in similar directions, resulting

in a small relative displacement.

a

c c

b

Figure 1: Graphical example of antenna displacement

R̂XX is obtained using N = 200 snapshots and the
Root Mean Squared Error (RMSE) is calculated with respect
to 1000 Mont Carlo simulations. We assume three signals
impinging from θ1 = 45, θ2 = 38◦, and θ3 = 15◦, the given
RMSE is

RMSE =

√







1

K

K
∑

k=1

(

(θ̂1,k − θ1)2 + (θ̂2,k − θ2)2 + (θ̂3,k − θ3)2
)

,

(16)

where θ̂i is the estimate of θi. The Signal to Noise Ratio (SNR)

is dened as

SNR =
σ2
1

σ2
n

=
σ2
2

σ2
n

=
σ2
3

σ2
n

.

To assess the performance of the proposed method under

demanding conditions the set of transmitted signals is highly

correlated. The wavefronts impinging from θ1 and θ2 are

correlated with correlation coefcient ρ = 1 and correlated
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Figure 2: RMSE for classical LS, TLS and TLS+RR formulations
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Figure 3: RMSE for classical LS and TLS versus unknown
displacement

to the wavefront impinging from θ3 with ρ = 0.8, the FBA-

SPS approach proposed in [31] is used and DOA estimation

is performed using the TLS ESPRIT and the generalized

eigen-value decomposition to cope with the noise coloring

introduced by the transformation.

Figure 2 presents the results when LS, only TLS, and TLS

with reduced rank projection are used and the results can

be compared to the Cramer Rao bound (CRB) for the real

array response including errors in the array response model.

The TLS formulation by itself is capable of providing an

improvement of approximately 2 dB over the LS formulation.

The reduced rank step is then shown to provide between 1

dB and 2 dB of extra improvement. The SPS step included in

the simulations is responsible for enlarging the gap between

the measured results and the CRB, since it sacrices effective

array aperture in order to decorrelate the received signals.

To compare the performance to the TLS and LS for-

mulations with respect to the magnitude of the unknown

displacement a second set of simulations was performed.

For this set the SNR was kept xed at 5 dB while the

unknown displacement represent by b in Figure 1 is varied.

Figure 3 shows how the unknown displacement affects the

performances of the TLS and LS methods. As expected the

accuracy difference between the TLS and LS increases as the

unknown displacement grows.

V. CONCLUSION

Important DOA estimation techniques demand precise array

response structures that often cannot be achieved in real

implementations. To deal with these physical limitations the

array interpolation method has been proposed. In practical

systems the array response is often not fully known and

can only be estimated within a limited degree of accuracy

(empirical measurements). To deal with this problem this work

proposes a novel TLS approach for the calculation of the

transformation matrices that is able to cope with imperfections

in the known array response. Furthermore, a novel reduced

rank step is used to take advantage of the correlated nature

of the array response matrices used for the calculation of

the transformation matrix. The reduced rank step is shown to

obtain an improved transformation that yields reduced DOA

estimation bias. The computationally intensive TLS and RR

steps can be performed off-line if a sector-by-sector processing

approach is used, thus allowing this approach to be used in

real time applications.

ACKNOWLEDGEMENTS

The research leading to the results reported in this paper

has received funding from the European Community’s Seventh

Framework Programme (FP7/2007-2013) under grant agree-

ment n°287207 as well as funding from the German Federal

Ministry of Economics and Technology under grant agreement

50NA1110. This support is greatly acknowledged.

REFERENCES

[1] J. E. Evans, J. R. Johnson, and D. F. Sun, “Application of advanced
signal processing techniques to angle of arrival estimation in ATC navi-
gation and surveillance system,” Massachusetts Institute of Technology,
Tech. Rep., 1982.

[2] S. Pillai and B. H. Kwon, “Forward/backward Spatial Smoothing
Techniques for Coherent Signal Identication ,” IEEE Transactions on

Acoustics, Speech and Signal Processing, vol. 37, pp. 8–9, January 1989.

[3] Y. Bresler and A. Macovski, “Exact Maximum Likelihood Estimation
of Superimposed Exponentials Signals in Noise,” IEEE ASSP Magazine,
vol. 34, pp. 1081–189, 1986.

[4] R. Roy and T. Kailath, “ESPRIT - estimation of signal parameters via
rotation invariance techniques,” IEEE Transactions on Acoustics Speech

and Signal Processing, vol. 17, 1989.

[5] P. Stoica and A. Nehorai, “A Novel Eigenanalysis Method for Direction
Estimation,” in Proceedings IEEE F., 1990.

[6] A. J. Barabell, “Improving the Resolution Performance of Eigenstruc-
tured Based Direction-Finding Algorithms,” in Proceedings of ICASSP

83, 1983.

[7] T. Bronez, “Sector interpolation of non-uniform arrays for efcient
high resolution bearing estimation,” in Acoustics, Speech, and Signal

Processing, 1988. ICASSP-88., 1988 International Conference on, 1988.

[8] B. Friedlander, “The root-MUSIC algorithm for direction nding with
interpolated arrays,” Signal Processing, vol. 30, pp. 15–29, 1993.

[9] M. Pesavento, A. Gershman, and Z.-Q. Luo, “Robust array interpola-
tion using second-order cone programming,” Signal Processing Letters,
vol. 9, pp. 8–11, 2002.

[10] M. Buhren, M. Pesavento, and J. F. Böhme, “Virtual array design for
array interpolation using differential geometry,” in Acoustics, Speech,

and Signal Processing, 2004. Proceedings. (ICASSP ’04). IEEE Inter-

national Conference on, vol. 2, 2004.

[11] B. Lau, G. Cook, and Y. Leung, “An improved array interpolation
approach to DOA estimation in correlated signal environments,” in
Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP

’04). IEEE International Conference on, 2004.

[12] B. Lau, M. Viberg, and Y. Leung, “Data-adaptive array interpolation
for DOA estimation in correlated signal environments,” in Acoustics,

Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05). IEEE

International Conference on, 2005.

[13] M. Buhren, M. Pesavento, and J. F. Bohme, “A new approach to array
interpolation by generation of articial shift invariances: interpolated ES-
PRIT,” in Acoustics, Speech, and Signal Processing, 2003. Proceedings.

(ICASSP ’03). 2003 IEEE International Conference on, 2003.



[14] A. Weiss and M. Gavish, “The interpolated ESPRIT algorithm for
direction nding,” in Electrical and Electronics Engineers in Israel,

1991. Proceedings., 17th Convention of, 1991.
[15] M. A. M. Marinho, F. Antreich, J. P. C. L. da Costa, and J. A. Nossek,

“A Signal Adaptive Array Interpolation Approach with Reduced Trans-
formation Bias for DOA estimation of Highly Correlated Signals,” in
Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP

’14). IEEE International Conference on, 2014.
[16] B. Ottersten, M. Viberg, and T. Kailath, “Analysis of Subspace Fitting

and ML Techniques for Parameter Estimation from Sensor Array Data,”
IEEE Transactions on Signal Processing, vol. 40, no. 3, March 1992.

[17] B. Ottersten, M. Viberg, P. Stoica, and A. Nehorai, “Exact and large
sample ML, techniques for parameter estimation and detection in array
processing,” RadarArray Processing, pp. 99–151.

[18] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood
from Incomplete Data via the EM Algorithm,” J. Royal Statistical Soc.

B., vol. 39, no. 1, 1977.
[19] T. K. Moon, “The Expectation-Maximization Algorithm,” IEEE Signal

Processing Magazine, November 1996.
[20] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions.

John Wiley & Sons, Inc., New York, 1997.
[21] M. Miller and D. Fuhrmann, “Maximum-Likelhood Narrow-Band Direc-

tion Finding and the EM Algorithm,” IEEE Transactions on Acoustics

Speech and Signal Processing, vol. 38, pp. 1560–1577, 1990.
[22] J. A. Fessler and A. O. Hero, “Space-Alternating Generalized

Expectation-Maximization Algorithm,” IEEE Transactions on Signal

Processing, vol. 42, no. 10, October 1994.
[23] F. A. Dietrich, “A Tutorial on Channel Estimation with SAGE,” Tech-

nical Report TUM-LNS-TR-06-03, 2006.
[24] F. Antreich, J. Nossek, G. Seco-Granados, and A. Swindlehurst, “The

Extended Invariance Principle for Signal Parameter Estimation in an
Unknown Spatial Field,” IEEE Transactions on Signal Processing,
vol. 59, no. 7, pp. 3213–3225, July 2011.

[25] M. Wax and T. Kailath, “Detection of signals by information by
information theoric criteria,” IEEE Transactions on Acoustics Speech

and Signal Processing, vol. 33, pp. 387–392, 1985.
[26] E. Radoi and A. Quinquis, “A new method for estimating the number of

harmonic components in noise with application in high resolution radar,”
EURASIP Journal on Applied Signal Processing, pp. 1177–1188, 2004.

[27] J. P. C. L. da Costa, M. Haardt, F. Romer, and G. Del Galdo, “Enhanced
model order estimation using higher-order arrays,” Conference Record of

The Forty-First Asilomar Conference on Signals, Systems & Computers,
pp. 412–416, 2007.

[28] J. P. C. L. da Costa, F. Roemer, M. Haardt, and R. T. de Sousa Jr., “Multi-
Dimensional Model Order Selection,” EURASIP Journal on Advances

in Signal Processing, vol. 26, 2011.
[29] J. P. C. L. da Costa, F. Roemer, and M. Haardt, “Deterministic prewhiten-

ing to improve subspace parameter estimation techniques in severely
colored noise environments,” in Proc. 54th International Scientic

Colloquium (IWK), 2009.
[30] J. P. C. L. da Costa, K. Liu, H. C. So, M. H. F. Roemer, and

S. Schwarz, “Generalized multidimensional prewhitening for enhanced
signal reconstruction and parameter estimation,” in Signal Processing,

Elsevier publisher, 2013.
[31] B. Friedlander and A. Weiss, “Direction nding using spatial smoothing

with interpolated arrays,” Aerospace and Electronic Systems, IEEE

Transactions on, vol. 28, pp. 574–587, 1992.

View publication stats


